

Szenarien für Strom- und Fernwärmeaufbringung und Stromnachfrage im Hinblick auf Klimaziele 2030 und 2050

ENDBERICHT	
Verfasser:	Dr. Martin Baumann
	Dr. Gerald Kalt
Auftraggeber:	Klima- und Energiefonds
Datum:	Wien, Juni 2015

IMPRESSUM

Herausgeberin: Österreichische Energieagentur – Austrian Energy Agency, Mariahilfer Straße 136, A-1150 Wien,
T. +43 (1) 586 15 24, Fax DW - 340, office@energyagency.at | www.energyagency.at
Für den Inhalt verantwortlich: DI Peter Traupmann | Gesamtleitung: Dr. Martin Baumann |
Lektorat: Dr. Margaretha Bannert | Layout: Dr. Martin Baumann |
Herstellerin: Österreichische Energieagentur – Austrian Energy Agency | Verlagsort und Herstellungsort: Wien
Nachdruck nur auszugsweise und mit genauer Quellenangabe gestattet. Gedruckt auf chlorfrei gebleichtem Papier.

Die Österreichische Energieagentur hat die Inhalte der vorliegenden Publikation mit größter Sorgfalt recherchiert und dokumentiert. Für die Richtigkeit, Vollständigkeit und Aktualität der Inhalte können wir jedoch keine Gewähr übernehmen.

Kurzfassung

Zur Erfüllung der Berichtspflichten im Rahmen des EU Monitoring Mechanismus 2015 und als Unterstützung für den Diskussionsprozess zum klima- und energiepolitischen Rahmen 2030/2050 wurden durch ein Konsortium aus der Österreichischen Energieagentur, der TU Wien, der TU Graz und dem Umweltbundesamt modellgestützt drei energiewirtschaftliche Szenarien bis 2050 entwickelt. Das vorliegende Projekt der Österreichischen Energieagentur liefert als Beitrag dazu drei Szenarien für die Teilbereiche öffentliche Stromund Fernwärmeaufbringung sowie Stromnachfrage in Österreich bis zum Jahr 2050. Dazu wurde das von der Österreichischen Energieagentur entwickelte Österreich-Modell eingesetzt.

- Szenario "with existing measures (WEM)": Dieses Szenario berücksichtigt bis zu einem bestimmten Zeitpunkt durchgeführte und verabschiedete ("adopted and implemented") politische und sonstige Maßnahmen.
- Szenario "with additional measures (WAM)": Dieses Szenario berücksichtigt geplante politische und sonstige Maßnahmen, die mit hoher Wahrscheinlichkeit durchgeführt werden. Das Szenario WAM beruht auf der Energiestrategie Österreich und dem Klimaschutzgesetz. Die Ziele der Energiestrategie (1100 PJ EEV, 34 % Erneuerbare, -16 % THG im Effort Sharing) werden im Szenario abgebildet.
- Szenario "with additional measures plus (WAM+)": Dieses Szenario umfasst Maßnahmen, die nach 2020 wirksam werden (mit Blick auf den Zielpfad 2050¹) und die notwendige Transformation der Stromerzeugung und gleichzeitig eine Begrenzung bzw. Reduktion des Energieverbrauchs bewirken.

Im Szenario "with existing measures (WEM)" steigt die modellierte Stromnachfrage des Sektors Haushalte um durchschnittlich 0,3 % p. a. Wesentliche Einflussfaktoren sind die Bevölkerungsentwicklung sowie die quantitative und qualitative Ausstattung der Haushalte mit Haushaltsgeräten.

Die Stromnachfrage des Sektors Industrie steigt – beeinflusst durch die Wirtschaftsentwicklung – um 1,9 % p. a., die des Dienstleistungssektors um 0,7 % p. a. Der Verbrauch der Landwirtschaft stagniert (Tabelle 4). Die Gesamtstromnachfrage steigt von 2012 bis 2050 von 224 PJ auf 350 PJ, d. h. mit 1,2 % p. a. (Tabelle 15).

Bedingt durch die steigende Stromnachfrage erhöht sich die Gesamtstromaufbringung von 258 PJ auf 408 PJ². Der Anteil der Wasserkraft sinkt von 59 % auf 37 %, jener von Erdgas steigt leicht von 10 % auf 12 %. Die Stromerzeugung aus Kohle verschwindet bis 2050 vollständig. Die beiden erneuerbaren Energieträger Wind und PV wachsen stark: Wind von 3 % auf 12 %, PV von 0,5 % auf 16 %. Die Nettostromimporte steigen erheblich, von 3 % auf 12 % Anteil an der gesamten Stromaufbringung (Tabelle 17, Abbildung 27).

Der Fernwärmeausstoß sinkt von 2012 bis 2050 – bedingt durch die sinkende Fernwärmenachfrage – leicht um durchschnittlich 0,1 % p. a., von 84 auf 81 PJ. Die Erzeugung findet in verstärktem Maß in Erdgas-KWK-Anlagen statt, während die Erzeugung von Fernwärme aus Biomasse sich von Biomasse-KWK-Anlagen zu Biomasseheizwerken verschiebt (Tabelle 18, Abbildung 28). Der Ausstoß der Erdgas-KWK-Anlagen steigt, während der Beitrag der Biomasse-KWK-Anlagen zurückgeht und teilweise durch Biomasse-Heizwerke ersetzt wird. Diese Verschiebung von Biomasse-KWK-Anlagen hin zu Biomasse-Heizwerken beruht – wie schon der

¹ Das bedeutet, dass die Ergebnisse hinsichtlich Energieverbrauch und Treibhausgasemissionen nicht vorgegeben waren, sondern die Maßnahmen mit Blick auf diese Ziele gewählt bzw. gestaltet wurden.

² Die Differenz zwischen Aufbringung und Nachfrage ergibt sich durch die anfallenden Netzverluste, den Verbrauch des Sektors Energie sowie anfallende Exporte.

Rückgang der Stromproduktion aus Biomasse – auf dem Auslaufen der Unterstützung der KWK-Anlagen durch das derzeit bis 2020 geltende Ökostromgesetz (ÖSG). Der Weiterbetrieb der angeschlossenen Wärmenetze wird durch Biomasse-Heizwerke abgedeckt.

Im Szenario "with additional measures (WAM)" verringert sich das durchschnittliche Wachstum der Stromnachfrage des Sektors Industrie auf 1,8 % p. a. Während die Stromnachfrage des Sektors Landwirtschaft um 0,4 % p. a. sinkt, steigt die des Dienstleistungssektors um etwa 0,5 % p. a. (Tabelle 7) Die Gesamtstromnachfrage im Jahr 2050 sinkt um 15 PJ auf 338 PJ (Tabelle 22).

Die Gesamtstromaufbringung im Jahr 2050 bleibt im Vergleich zum Szenario "WEM" gleich (409 PJ). Durch die gestiegene inländische Erzeugung gehen die Importe zurück, außerdem kommt es im Jahr 2050 zu Brutto-Exporten im Ausmaß von 13 PJ (Tabelle 22, Tabelle 24, Abbildung 30). Der Ausbau der erneuerbaren Stromerzeugung im Ausmaß von 18,5 PJ führt im Jahr 2050 im Vergleich zum Szenario "WEM" zu einem Rückgang der Importe (-16 PJ) sowie der Erzeugung aus Erdgas-KWK-Anlagen (-2 PJ).

Die Gesamtfernwärmenachfrage im Jahr 2050 sinkt gegenüber 2012 um 3 PJ auf 73 PJ (Tabelle 23). Der Erhalt der Biomasse-KWK-Anlagen geht zulasten der Biomasse-Heizwerke (Tabelle 25, Abbildung 31).

Im Szenario "with additional measures – plus (WAM+)" stagniert die Stromnachfrage des Sektors Industrie bis 2050 auf dem Niveau von 2012. Die Stromnachfrage des Sektors Landwirtschaft sinkt um 1,1 % p. a., die des Dienstleistungssektors sowie der Haushalte um etwa 0,7 % p. a. (Tabelle 10). Die Gesamtstromnachfrage im Jahr 2050 sinkt um 127 PJ auf 211 PJ (Tabelle 29).

Die Gesamtstromaufbringung im Jahr 2050 sinkt um 90 PJ auf 320 PJ. Die weitere Erhöhung der Erzeugung aus Wind und Photovoltaik führt gemeinsam mit der Verbrauchsreduktion zu einem Wegfall der Importe bei gleichzeitiger Kompensation der Erzeugung der Erdgas-KWK. (Tabelle 31, Abbildung 34).

Die Gesamtfernwärmenachfrage im Jahr 2050 sinkt im Vergleich zum Szenario "WAM" um 10 PJ auf 62 PJ (Tabelle 30). Dieser Rückgang führt mit der Installation von Großwärmepumpen und zusätzlichen Biomasse-Heizwerken zu einem vollständigen Ersatz der Erzeugung aus Erdgas-Anlagen (Tabelle 32, Abbildung 35).

Die modellierte Strom- und Fernwärmeaufbringungsentwicklung bis 2050 in den drei ausgearbeiteten Szenarien ist in Abbildung 1 dargestellt. Tabelle 1 zeigt Strom- und Fernwärmeaufbringung und -nachfrage im Jahr 2012, sowie die relativen Änderungen bis 2030 bzw. 2050 in den drei Szenarien "WEM", "WAM" und "WAM+".

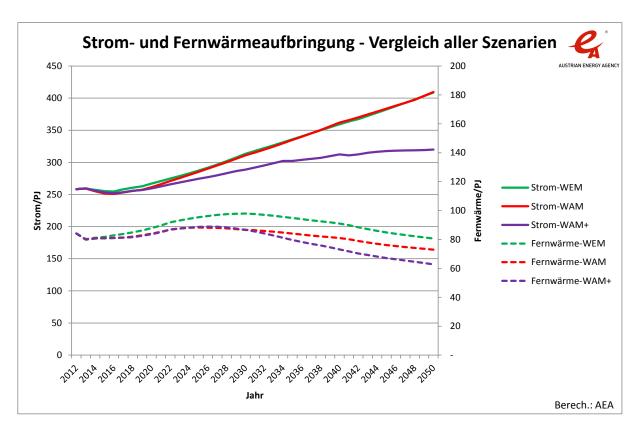


Abbildung 1: Strom- und Fernwärmeaufbringung –Szenarienvergleich

Tabelle 1: Strom- und Fernwärmeerzeugung, sowie Strom- und Fernwärmenachfrage jedes Sektors, Erzeugung und Nachfrage für 2012 und relative Änderung bis 2013/2030 und 2012/2050

	PJ	Wi	M	W	AM	WAM+		
	2012	2012/2030	2012/2050	2012/2030	2012/2050	2012/2030	2012/2050	
Stromerzeugung	258	+ 21%	+ 58%	+ 20%	+ 59%	+ 12%	+ 24%	
für: Haushalte	56	- 10%	- 7%	- 19%	- 17%	- 20%	- 33%	
für: Dienstleistungen	53	- 10%	+ 10%	- 19%	+ 1%	- 21%	- 31%	
für: Industrie	101	+ 42%	+ 102%	+ 34%	+ 94%	- 1%	+ 2%	
für: Landwirtschaft	3	- 19%	- 7%	- 27%	- 15%	- 28%	- 35%	
für: Verkehr	11	+ 95%	+ 204%	+ 110%	+ 249%	+ 126%	+ 186%	
Fernwärmeerzeugung	84	+ 16%	- 4%	+ 3%	- 13%	+ 3%	- 25%	
für: Haushalte	30	+ 34%	+ 17%	+ 16%	+ 0%	+ 24%	- 1%	
für: Dienstleistungen	34	- 9%	- 39%	- 19%	- 47%	- 24%	- 64%	
für: Industrie	12	+ 37%	+ 47%	+ 29%	+ 38%	+ 14%	- 9%	
für: Landwirtschaft	0,4	- 0,2%	+ 2%	- 10%	- 8%	- 20%	- 25%	

Inhaltsverzeichnis

1	AUFTRAG UND AUFBAU DER STUDIE	9
1.1	Hintergrund	9
1.2	Szenarien	9
1.3	Das Österreich-Modell	10
1.3.1	Zeitliche Auflösung	10
1.4	Abgrenzungen	13
1.4.1	Stromnachfrage	13
1.4.2	Strom- und Fernwärmeaufbringung	14
2	STROMNACHFRAGE	15
2.1	Szenario "WEM"	15
2.1.1	Private Haushalte	15
2.1.2	Dienstleistungen	17
2.1.3	Landwirtschaft	18
2.1.4	Industrie	19
2.1.5	Nachfragetreiber	19
2.1.6	Ergebnisse für die Stromnachfrage	22
2.2	Szenario "WAM"	25
2.2.1	Maßnahmen	25
2.2.2	Ergebnisse für die Stromnachfrage	26
2.3	Szenario "WAM+"	28
2.3.1	Annahmen	28
2.3.2	Ergebnisse	28
3	STROM- UND FERNWÄRMEAUFBRINGUNG	31
3.1	Szenario "WEM"	31
3.1.1	CO ₂ -Zertifikatspreise	31
3.1.2	Energieträgerpreise	31
3.1.3	Wasserkraft	32
3.1.4	Anlagen zur Nutzung erneuerbarer Energieträger	33
3.1.5	Anlagen auf Basis fossiler Brennstoffe	35
3.1.6	Industrielle Erzeugung und Abfallverbrennung	36
3.1.7	Stromimporte	37
3.1.8	Verteilungsverluste von Strom und Fernwärme	37
3.1.9	Verbrauch des Sektors Energie	37
3.1.10	Strom- und Fernwärmenachfrage	37
3.1.11	Ergebnisse für die Strom- und Fernwärmeaufbringung	39
3.2	Szenario "WAM"	43
3.2.1	CO ₂ -Zertifikatspreise	43
3.2.2	Energieträgerpreise	43
3.2.3	Maßnahmen im Bereich erneuerbarer Stromerzeugung	43

3.2.4	Anlagen auf Basis fossiler Brennstoffe	43
3.2.5	Industrielle Erzeugung und Abfallverbrennung	43
3.2.6	Strom- und Fernwärmenachfrage	44
3.2.7	Ergebnisse für die Strom- und Fernwärmeaufbringung	44
3.3	Szenario "WAM+"	47
3.3.1	CO ₂ -Zertifikatspreise	47
3.3.2	Energieträgerpreise	48
3.3.3	Maßnahmen im Bereich erneuerbarer Stromerzeugung	48
3.3.4	Anlagen auf Basis fossiler Brennstoffe	48
3.3.5	Industrielle Erzeugung und Abfallverbrennung	49
3.3.6	Strom- und Fernwärmenachfrage	49
3.3.7	Ergebnisse für die Strom- und Fernwärmeaufbringung	49
4	ANHANG: STORYLINES ZUM SZENARIO WAM+	53
4.1	Allgemeine Rahmenbedingungen	53
4.2	Industrie	55
4.3	Energie	56
5	LITERATURVERZEICHNIS	59
6	ABKÜRZUNGEN	61
7	ABBILDUNGSVERZEICHNIS	63
8	TABELLENVERZEICHNIS	65

1 Auftrag und Aufbau der Studie

1.1 Hintergrund

Zur Erfüllung der Berichtspflichten im Rahmen des EU Monitoring Mechanismus 2015 und als Unterstützung für den Diskussionsprozess zum klima- und energiepolitischen Rahmen 2030/2050 wurden durch ein Konsortium aus der Österreichischen Energieagentur, der TU Wien, der TU Graz und dem Umweltbundesamt³), modellgestützt drei energiewirtschaftliche Szenarien bis 2050 entwickelt (siehe auch 1.2).

Das vorliegende Projekt der Österreichischen Energieagentur liefert als Beitrag zu dieser Szenarienentwicklung drei Szenarien für die Teilbereiche öffentliche Strom- und Fernwärmeaufbringung sowie Stromnachfrage in Österreich bis zum Jahr 2050. Dazu wurde das von der Österreichischen Energieagentur entwickelte Österreich-Modell (siehe dazu 1.3) eingesetzt.

Die Aufgabenteilung erforderte umfangreiche Abstimmungen mit den Konsortiumspartnern sowie die Integration von deren Teilergebnissen in das Österreich-Modell der Österreichischen Energieagentur. Auf die übernommenen Daten wird in den jeweiligen Abschnitten dieses Berichts gesondert hingewiesen.

1.2 Szenarien

Zur Erfüllung der Berichtspflichten im Rahmen des "EU Monitoring Mechanismus" ist die Entwicklung und Auswertung zweier Szenarien erforderlich:

- Szenario "with existing measures (WEM)": Dieses Szenario berücksichtigt bis zu einem bestimmten Zeitpunkt durchgeführte und verabschiedete ("adopted and implemented") politische und sonstige Maßnahmen. Im Fall der Berichtspflichten für 2015 wurde der Stichtag auf den 1. 5. 2014 gelegt.⁴
- Szenario "with additional measures (WAM)": Dieses Szenario berücksichtigt zusätzlich zu den bereits durchgeführten und verabschiedeten Maßnahmen des Szenarios "WEM" auch geplante politische und sonstige Maßnahmen, die mit hoher Wahrscheinlichkeit durchgeführt werden. Das Szenario WAM beruht auf der Energiestrategie Österreich und dem Klimaschutzgesetz. Die Ziele der Energiestrategie (1100 PJ EEV, 34 % Erneuerbare, -16 % THG im Effort Sharing) werden im Szenario abgebildet.

Die genannten Szenarien werden jeweils durch ein Bündel von Maßnahmen beschrieben, die vom Umweltbundesamt bereitgestellt wurden.

Als weitere Unterstützung für den Diskussionsprozess zum klima- und energiepolitischen Rahmen 2030/2050 wurde ein Szenario entwickelt, das eine Erreichung der möglichen, noch zu definierenden österreichischen Ziele im Rahmen des EU-Ziels einer Treibhausgasreduktion um 40 % bis 2030 abbildet und außerdem den Zeitbereich bis 2050 abdeckt, womit es zeitlich deutlich über die bisherigen Szenarien hinausgeht. Dieses Szenario "WAM+" beinhaltet Maßnahmen, die nach 2020 wirksam werden (mit Blick auf den Zielpfad 2050⁵), und die notwendige Transformation der Stromerzeugung und gleichzeitig eine Begrenzung bzw. Reduktion des

³ Die Aktivitäten der Projektpartner wurden durch das Umweltbundesamt koordiniert.

⁴ Änderungen nach dem Stichtag und aktuelle Diskussionen wurden nicht berücksichtigt.

⁵ Das bedeutet, dass die Ergebnisse hinsichtlich Energieverbrauch und Treibhausgasemissionen nicht vorgegeben waren, sondern die Maßnahmen mit Blick auf diese Ziele gewählt bzw. gestaltet wurden.

Energieverbrauchs bewirken. Die Basis für dieses Szenario wurde in einem vom Umweltbundesamt organisierten Workshop mit verschiedenen Fachinstitutionen am 21. Oktober 2014 gelegt.

1.3 Das Österreich-Modell

Das Österreich-Modell der Österreichischen Energieagentur bildet den Energiefluss von der Primärenergieaufbringung über verschiedene Umwandlungsstufen bis hin zur Nutzenergie ab. Bestimmender Faktor des
Energieflusses ist neben den zur Umwandlung eingesetzten Technologien die Entwicklung der Nachfrage nach
einzelnen Nutzenergietypen, die wiederum von verschiedenen makroökonomischen Faktoren (wie
Bruttowertschöpfung und Bevölkerungswachstum) bestimmt wird. Wesentliche Sektoren des Energieverbrauchs (Raumwärme, Verkehr, Strom- und Wärmeaufbringung) sind technologisch in erhöhter Auflösung
abgebildet. Als Grundlage sowohl für die Struktur als auch für die Daten des Modells dienten Energie- und
Nutzenergiebilanz der Statistik Austria des Jahres 2012.

Zur Entwicklung dieses Gesamtmodells des Energiesystems wurde der von der IEA entwickelte Modellgenerator TIMES eingesetzt. Dieses Modellierungswerkzeug wird weltweit zur Erstellung von regionalen, nationalen und globalen Energiesystemmodellen für die Entwicklung von Energieszenarien eingesetzt.

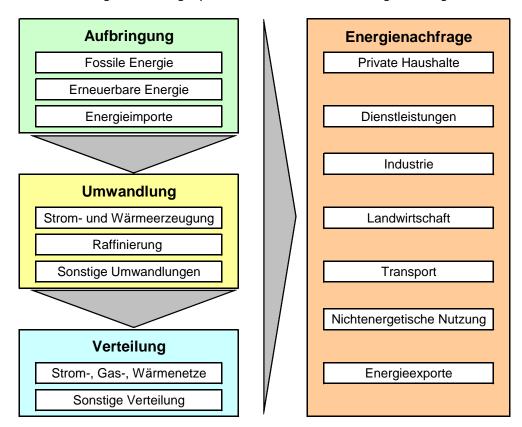


Abbildung 2: Struktur des Gesamtmodells des österreichischen Energiesystems

1.3.1 Zeitliche Auflösung

In der ursprünglichen Version des Österreich-Modells erfolgten sämtliche Berechnungen auf jährlicher Basis. Im Rahmen des gegenständlichen Projektes wurde eine wesentliche modelltechnische Erweiterung durchgeführt: die Implementierung von unterjährigen Zeitschritten ("Time slices"). Das heißt, in der aktuellen Modellversion

werden sämtliche Gleichungen nicht mehr nur auf jährlicher Basis, sondern auch für saisonale und tageszeitspezifische Ausschnitte des Jahres gelöst. Konkret wurden drei saisonale ("Winter", "Sommer" und "Übergangszeit") und zwei tageszeitliche Timeslices (Tag und Nacht) implementiert. Jedes Simulationsjahr setzt sich also aus sechs Zeitabschnitten zusammen. Die saisonalen Zeitabschnitte entsprechen jenen der Standard-Lastprofile laut (VDEW, 1999) und decken sich *nicht* mit den kalendarischen oder astronomischen Jahreszeiten.

Die wichtigsten modelltechnischen Vorteile von unterjährigen Zeitschritten liegen darin, dass jahres- und tageszeitliche Schwankungen im Bedarf von Strom und Fernwärme sowie die Erzeugungsprofile volatiler Stromerzeugungstechnologien abgebildet werden können. So sind für Windenergie, PV-Anlagen und Laufwasserkraftwerke typische Erzeugungsprofile hinterlegt, die auf statistischen Daten (Windenergie: (APG, 2014); Wasserkraft: (E-Control, 2014)) bzw. Simulationsprogrammen (PV-Anlagen: (JRC, 2013)) basieren. Darüber hinaus wird der Einsatz von KWK-Anlagen in Simulationen mit unterjährigen Zeitschritten wesentlich realistischer abgebildet, als es mit der bisherigen Modellversion möglich war. Schließlich spielt die saisonal stark schwankende Bedarfsstruktur von Fernwärme im Raumwärmebereich eine entscheidende Rolle für die jährliche Auslastung von KWK-Anlagen und Heizwerken, und damit auch für deren Wirtschaftlichkeit bzw. die kostenoptimale Zusammensetzung des Anlagenparks.

Die Berücksichtigung der Erzeugungsstrukturen von Windkraftanlagen, Wasserkraftwerken und PV-Anlagen gewinnt insbesondere in Szenarien mit stark zunehmenden Anteilen volatiler Erneuerbarer an Bedeutung. Aus diesen Strukturen ergeben sich nicht nur Einschränkungen für den Einsatz gewisser Technologien (insbesondere hinsichtlich der Einspeisung von PV-Strom an Sommertagen), sondern auch veränderte Rahmenbedingungen für den Einsatz von Speicherkraftwerken und konventionellen Kraftwerken, deren Betriebszeiten und -dauern zusehends von Einspeiseprofilen volatiler Erneuerbarer bestimmt werden. Aufgrund der Ausweitung des Betrachtungszeitraums im gegenständlichen Projekt auf das Jahr 2050 (bisher wurde nur der Zeitraum bis 2030 betrachtet; siehe (Österreichische Energieagentur, 2013)) war diese modelltechnische Erweiterung ein wesentlicher Schritt zur Sicherstellung der Konsistenz und Plausibilität der Modellergebnisse – insbesondere wenn Entwicklungspfade mit ambitionierten Maßnahmen zur Treibhausgasreduktion untersucht werden.

In Abbildung 3 sind die im Modell unterstellten Erzeugungsstrukturen der volatilen Erzeugungstechnologien dargestellt. Aus der Darstellung ist beispielsweise ersichtlich, dass knapp 45 % der Stromerzeugung aus PV-Anlagen in den Zeitabschnitt "Sommer-Tag" fallen, obwohl dieser Abschnitt nur rund 17 % des Jahres einnimmt. Windkraftanlagen speisen hingegen einen überproportionalen Anteil der Jahreserzeugung im Winter ein, während Laufwasserkraftwerke in diesem saisonalen Zeitabschnitt eine – bezogen auf die Jahreserzeugung und die Dauer des Timeslice – relativ geringe Einspeisung aufweisen.

-

⁶ Die für die Standard-Lastprofile (VDEW, 1999) unterstellte saisonale Verteilung, die ins Modell übernommen wurde, ist stark asymmetrisch: 140 Tage entfallen auf den "Winter", 123 auf den "Sommer" und lediglich 102 auf die "Übergangszeit". Als "Tag" wurde der Zeitraum von 6 bis 18 Uhr (Normalzeit) und als "Nacht" der Zeitraum von 18 bis 6 Uhr festgelegt.

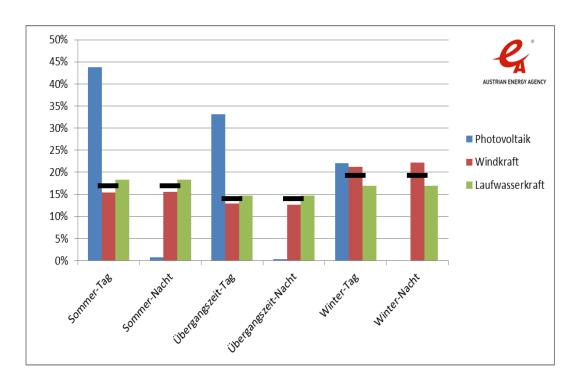


Abbildung 3: Zeitliche Erzeugungsstrukturen von Photovoltaik, Windkraft und Laufwasserkraft. (Verteilung der Jahreserzeugung auf die sechs Timeslices; zum Vergleich sind die Jahresanteile der Timeslices als schwarze Balken dargestellt)

Ebenso wie Erzeugungsstrukturen sind auch Bedarfsstrukturen im Modell über Timeslice-spezifische Jahresanteile implementiert. Abbildung 4 zeigt exemplarisch die auf Standard-Lastprofilen basierenden Bedarfsstrukturen für elektrische Energie in den Sektoren Landwirtschaft, Dienstleistungen und Haushalte.

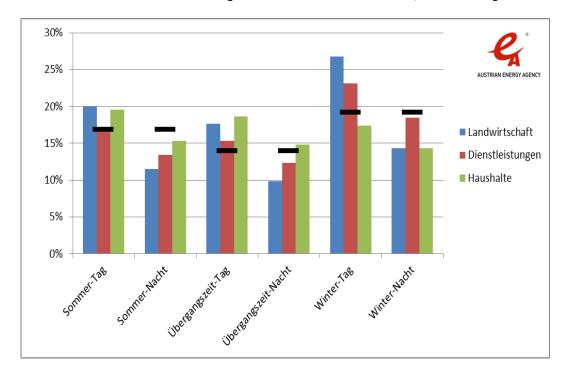


Abbildung 4: Zeitliche Stromverbrauchsstrukturen der Sektoren Landwirtschaft, Dienstleistungen und Haushalte basierend auf Standard-Lastprofilen, umgelegt auf die im Modell implementierten Zeitabschnitte (Die schwarzen Balken repräsentieren wie in Abbildung 3 die Jahresanteile der Timeslices)

1.4 Abgrenzungen

Die im Österreich-Modell modellierten Beiträge des Energiesystems sind zahl- und umfangreicher, als für dieses Projekt benötigt. Daher wurden einige Modelladaptionen vorgenommen (Abbildung 5).

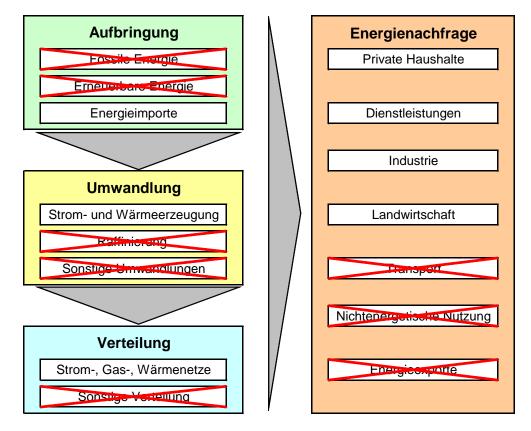


Abbildung 5: Überblick über die verwendeten Module des Österreich-Modells

1.4.1 Stromnachfrage

Für die Modellierung der *Nachfrage* nach elektrischer Energie wurde das Nachfragemodell des Österreich-Modells verwendet. Damit wurde die Stromnachfrage der Sektoren Haushalte, Industrie, Dienstleistungen und Landwirtschaft abgebildet, ausgenommen die Stromnachfrage der Sektoren Haushalte und Dienstleistungen für die Erzeugung von Raumwärme, Warmwasser und Raumkühlung.

Die Module zur Modellierung der Energienachfrage für den Transport, die nichtenergetische Nutzung sowie die Energieexporte (mit Ausnahme der Stromexporte) wurden vollständig deaktiviert. In den Modulen Haushalte sowie Dienstleistungen wurden die Nutzenergienachfragen Heizen, Kühlung und Warmwasser bzw. Raumheizung und Klimaanlagen deaktiviert. Darüber hinaus wurden in allen aktiven Sektoren die berücksichtigten Energieträger auf Strom reduziert.

Die Berechnung der Stromnachfrage Österreichs erfolgte für den Zeitraum von 2012 bis 2050 in Jahresschritten. Die Ergebnisse des Sektors Haushalte wurden zusätzlich in die Bereiche Beleuchtung, IT und Unterhaltung, Küche und Wäsche sowie Sonstiger Verbrauch unterteilt. Die Industrie wurde in folgende Branchen gegliedert: Metallerzeugung und -bearbeitung; Chemie und Petrochemie; Steine und Erden, Glas;

Fahrzeugbau; Maschinenbau; Bergbau; Nahrungs- und Genussmittel, Tabak; Papier und Druck; Holzverarbeitung; Bau; Textil und Leder sowie Sonstiger produzierender Bereich.

Die Modellierung der Stromnachfrage des Sektors Haushalte erfolgte in einem Bottom-up-Ansatz. Unter Berücksichtigung verschiedener Nachfragekategorien wurden generische Technologien modelliert, die diese Nachfragen erfüllen. Die Entwicklung dieser Nachfragen wurde durch die Anzahl der Haushalte sowie die bewohnte Fläche bestimmt. Die Stromnachfrage der Sektoren Dienstleistungen, Produktion und Landwirtschaft wurde in einem Top-down-Ansatz ermittelt; deren Nachfrage ist von der Wirtschaftsentwicklung getrieben.

Die Modellierung der Stromnachfrage wird in Kapitel 2 detaillierter beschrieben.

1.4.2 Strom- und Fernwärmeaufbringung

Für die Modellierung der öffentlichen Aufbringung von Strom- und Fernwärme wurde ebenfalls das Österreich-Modell verwendet. Von der Betrachtung ausgenommen wurde die Strom- und Fernwärmeaufbringung aus unternehmenseigenen Anlagen sowie aus Anlagen zur Verwertung von Abfall und Ablauge; die entsprechenden Module wurden im Österreich-Modell deaktiviert. Die zur vollständigen Abbildung der Aufbringung notwendigen Beiträge der unternehmenseigenen Anlagen sowie die außerhalb des Österreich-Modells berechnete Strom- und Fernwärmenachfrage (für Raumwärme, Warmwasser und Klimatisierung der Haushalte und Dienstleistungsgebäude; nur Stromnachfrage für den Verkehr) wurde von den Projektpartnern übernommen.

Die Berechnung der öffentlichen Strom- und Fernwärmeaufbringung Österreichs erfolgte für den Zeitbereich von 2012 bis 2050 in Jahresschritten. Die Ergebnisse dieser Berechnungen sind die Strom- und Fernwärmeerzeugung sowie der dafür benötigte Umwandlungseinsatz.

Die Modellierung der öffentlichen Strom- und Fernwärmeaufbringung erfolgte in einem Bottom-up-Ansatz. Dabei wurden die vorhandenen und zukünftig verfügbaren Kapazitäten nach der Art ihres Umwandlungseinsatzes und -ausstoßes aggregiert und unter Berücksichtigung ihrer technischen und ökonomischen Eigenschaften (wie z. B. Engpassleistung, Wirkungsgrad, Verfügbarkeit sowie z. B. Investitions- und Betriebskosten) abgebildet. Einzelne Anlagen wurden in dieser Studie nicht differenziert. Die Strom- und Fernwärmeerzeugung aus unternehmenseigenen Anlagen sowie aus der Verwertung von Abfall und Ablauge wurde von Projektpartnern berechnet und für die Betrachtung des Gesamtenergiesystems übernommen. Die Stromimporte ergaben sich aus der ökonomischen Optimierung.

Die Modellierung der Strom- und Fernwärmeaufbringung wird in Kapitel 3 detaillierter beschrieben.

2 Stromnachfrage

2.1 Szenario "WEM"

2.1.1 Private Haushalte

Die Stromnachfrage der privaten Haushalte wurde in die Bereiche Strom für "Raumwärme", "Klimatisierung" und "Warmwasser" sowie Strom für "Küche und Wäsche", "Büro und Unterhaltung", "Beleuchtung" sowie "Sonstige Anwendungen" unterteilt (Abbildung 6) und mit verschiedenen Ansätzen abgebildet. Der Strombedarf für den Betrieb von Heizungen sowie der Strombedarf für Warmwasser und Klimatisierung wurde im Raumwärmemodell der TU Wien erarbeitet und in das Österreich-Modell übernommen. Für die Abschätzung des Stromverbrauchs der Bereiche "Küche und Wäsche", "Beleuchtung" sowie "Büro und Unterhaltung" wurde ein detaillierter Bottom-up-Ansatz gewählt (siehe Abbildung 7) und direkt ins Österreich-Modell implementiert. Der Stromverbrauch der sonstigen Anwendungen erfolgt in einem aggregierten Ansatz.

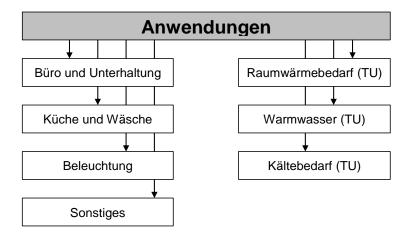


Abbildung 6: Anwendungsbereiche im Sektor der privaten Haushalte

Zur Abschätzung des Stromverbrauchs der Bereiche "Küche und Wäsche", "Beleuchtung", "Büro und Unterhaltung" wurde eine Geräteliste erstellt und die Leistung der Geräte sowie deren Betriebszeit in unterschiedlichen Betriebszuständen geschätzt.

Einen wichtigen Einflussfaktor stellt bei der Modellierung die Entwicklung der Anzahl der Haushalte sowie der Ausstattungsgrad der Haushalte mit der jeweiligen Gerätekategorie dar. Zur Abschätzung der Entwicklung der Privathaushalte wurde die 2011 aktualisierte Prognose der ÖROK (ÖROK, 2011) herangezogen und linear interpoliert. Daten zu Sättigung, Leistung und Betriebszeit der Geräte basieren auf (Fraunhofer, 2004), (Fraunhofer, 2005) sowie auf internen Expertenschätzungen. Für die Entwicklung des Ausstattungsgrades sowie die Effizienz der eingesetzten Technologien wurde von der Umsetzung der Vorgaben der Ökodesign-Richtlinie ausgegangen.

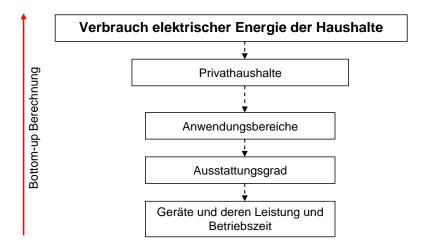


Abbildung 7: Schema der Berechnungsmethodik

Abbildung 8 illustriert die Unterteilung der einzelnen Anwendungsbereiche beispielhaft am Bereich "Küche und Wäsche".

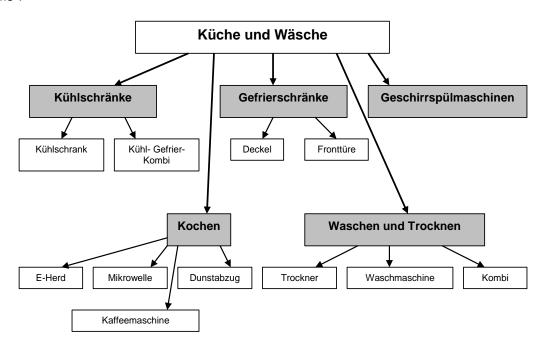


Abbildung 8: Anwendungsbereich Küche und Wäsche

Den einzelnen Geräten wurden im Modell eine Leistung sowie eine Nutzungsdauer zugeordnet. Soweit dies aufgrund der Datenlage möglich war, wurden Leistung und Nutzungsdauer nicht nur für den Normalbetrieb der Geräte bestimmt, sondern auch für die Betriebszustände Stand-by und Schein-Aus (siehe Abbildung 9).

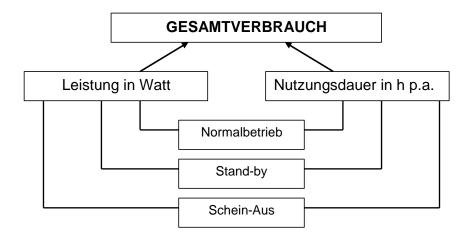


Abbildung 9: Bestimmung des Stromverbrauchs einzelner Geräte

Die Abschätzung des Stromverbrauchs für die Beleuchtung unterscheidet sich von den anderen Bereichen dadurch, dass dessen Entwicklung nicht von der Anzahl der Haushalte, sondern von der bewohnten (und damit beleuchteten) Fläche bestimmt wird. Für die Entwicklung des Ausstattungsgrades sowie die Effizienz der eingesetzten Technologien wurde ebenfalls von der Umsetzung der Vorgaben der Ökodesign-Richtlinie ausgegangen.

Der Bereich "Sonstiges" umfasst einen äußerst heterogenen Gerätebestand, darunter zahlreiche Kleingeräte. Insgesamt sind diese Geräte für rund 6 % des elektrischen Endenergiebedarfs und damit einen relativ geringen Anteil am Energieverbrauch der privaten Haushalte verantwortlich. Gegen eine detaillierte Modellierung dieser Geräte spricht der hohe Aufwand, der mit der Datensammlung und der Implementierung im Modell verbunden wäre.

Im Rahmen der Modellierung dient der Bereich "Sonstiges" als Residuum für den Abgleich mit realen Daten aus der Energiebilanz. Die Entwicklung dieses Verbrauchs wird ebenfalls von der Anzahl der Haushalte getrieben, unter Berücksichtigung einer pauschalen Effizienzverbesserung von 1 % pro Jahr.

2.1.2 Dienstleistungen

Der Sektor Öffentliche und private Dienstleistungen setzt sich aus folgenden Branchen zusammen⁷: Handel, Instandhaltung und Reparatur von Kraftfahrzeugen und Gebrauchsgütern (ÖNACE G), Beherbergungs- und Gaststättenwesen (ÖNACE H), Verkehr und Nachrichtenübermittlung (ÖNACE 63, 64), Kredit- und Versicherungswesen (ÖNACE J), Realitätenwesen, Vermietung beweglicher Sachen, Unternehmensbezogene Dienstleistungen (ÖNACE K), Öffentliche Verwaltung, Landesverteidigung, Sozialversicherung (ÖNACE L) sowie Sonstige Dienstleistungen (ÖNACE M-P).

Die Stromnachfrage der öffentlichen und privaten Dienstleistungen wurde mit zwei verschiedenen Ansätzen ermittelt. Die Stromnachfrage für die Bereiche "Raumwärme und Klimatisierung" sowie "Warmwasser" wurde von der TU Wien mittels eines Raumwärmemodells ermittelt. Die Modellierung der restlichen Stromnachfrage erfolgte durch einen Top-down-Ansatz, basierend auf Abschätzungen zur zukünftigen Entwicklung der

⁷ Klassifizierung basiert auf ÖNACE 2003

Stromintensität und Annahmen zur zukünftigen Entwicklung des Bruttoproduktionswertes bis 2050 (siehe 2.1.5).

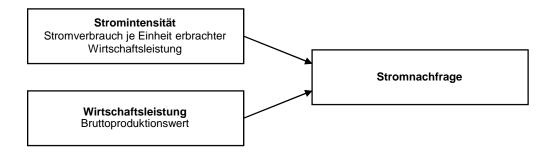


Abbildung 10: Top-down-Ansatz

Die Abschätzung der Entwicklung der Stromintensität des Sektors wurde unter Berücksichtigung des Bruttoproduktionswertes, des energetischen Endverbrauchs, der Anteile der einzelnen Nutzenergiekategorien (Abbildung 11) am energetischen Endverbrauch, sowie des Stromanteils an den Nutzenergiekategorien durchgeführt. Dabei wurden die historischen Entwicklungen der jeweiligen Anteile von 1995 bis 2012 unter Berücksichtigung eines Einschleiffaktors bis 2050 fortgeschrieben.

Durch diesen Ansatz wurden auch mögliche Einflussfaktoren wie die technische Entwicklung, der zahlenmäßige Anstieg der Anlagen oder Geräte, sowie die Änderung des Nutzerverhaltens implizit fortgeschrieben. Auch die leichte Strukturveränderung hin zu weniger stromintensiven Branchen wurde durch diese Trendfortschreibung abgebildet. Der energetische Endverbrauch der Bereiche Raumwärme, Warmwasser und Klimatisierung, der von der TU Wien mit einem eigenen Raumwärmemodell berechnet wurde, wurde dabei nicht berücksichtigt.

Nutzenergiekategorien Raumheizung und Klimatisierung Dampferzeugung Industrieöfen Standmotoren Beleuchtung und IT Elektrochemische Anwendungen

Abbildung 11: Nutzenergiekategorien

2.1.3 Landwirtschaft

Der Sektor Landwirtschaft setzt sich aus folgenden Bereichen zusammen: Landwirtschaft, Jagd (ÖNACE 1), Forstwirtschaft (ÖNACE 2) sowie Fischerei und Fischzucht (ÖNACE 5)⁷. Analog zum Dienstleistungssektor wurde für die Abschätzung des Stromverbrauchs der Landwirtschaft ebenfalls ein Top-down-Ansatz herangezogen. Basierend auf Abschätzungen zur zukünftigen sektoralen Entwicklung der Stromintensität und den Annahmen

zur zukünftigen Entwicklung des Bruttoproduktionswertes (Abbildung 15) wurde der Stromverbrauch bis 2050 modelliert.

2.1.4 Industrie

Analog zum Dienstleistungssektor wurde für die Abschätzung des Stromverbrauchs der Industrie ein Top-down-Ansatz herangezogen, der auf die einzelnen Branchen angewendet wurde (Abbildung 12). Basierend auf Abschätzungen zur zukünftigen sektoralen Entwicklung der Stromintensitäten und Annahmen zur zukünftigen Entwicklung des Bruttoproduktionswertes (Abbildung 16) wurde der Stromverbrauch bis 2050 modelliert.

	Industrie
Eisen- und Stahlerzeugung	Nahrungs- und Genussmittel, Tabak
Chemie und Petrochemie	Papier und Druck
Nicht-Eisen-Metalle	■ Holzverarbeitung
Steine und Erden, Glas	B au
L → Fahrzeugbau	Textil und Leder
Maschinenbau	Sonst. Produzierender Bereich
■ Bergbau	

Abbildung 12: Branchengliederung der Industrie gemäß Energiebilanz der Statistik Austria

2.1.5 Nachfragetreiber

Die Stromnachfrage der einzelnen Sektoren wird durch verschiedene Nachfragetreiber bestimmt. Der Stromverbrauch der Haushalte für Beleuchtung wird durch die Entwicklung der Gesamtwohnfläche getrieben, der übrige Stromverbrauch durch die Anzahl der Haushalte (Abbildung 13). Diese Daten wurden (ÖROK, 2011) entnommen. Die Stromverbrauchsentwicklung der mit einem Top-down-Ansatz modellierten Sektoren wird hingegen von der Entwicklung des sektoralen Bruttoproduktionswertes bestimmt (Abbildung 14 bis Abbildung 16); diese Daten wurden auf Basis der in (Umweltbundesamt, 2013) verwendeten Daten bis 2050 weiterentwickelt.

Die Summe der Entwicklungen der sektoralen bzw. branchenspezifischen Bruttoproduktionswerte entspricht einem durchschnittlichen Gesamtwirtschaftswachstum von ca. 1,5 % p. a. von 2012 bis 2030, und von ca. 1,3 % bis 2050.

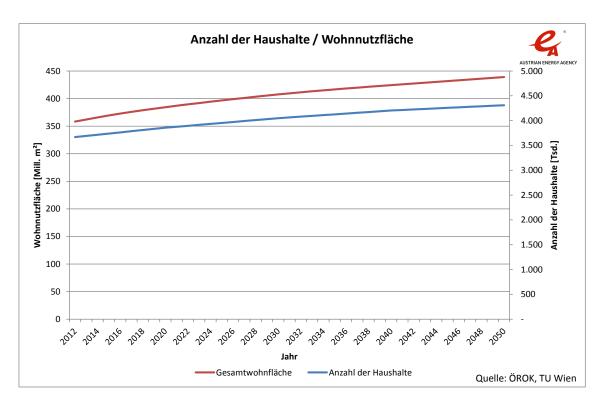


Abbildung 13: Anzahl der Haushalte und Gesamtwohnfläche im Szenario "WEM"

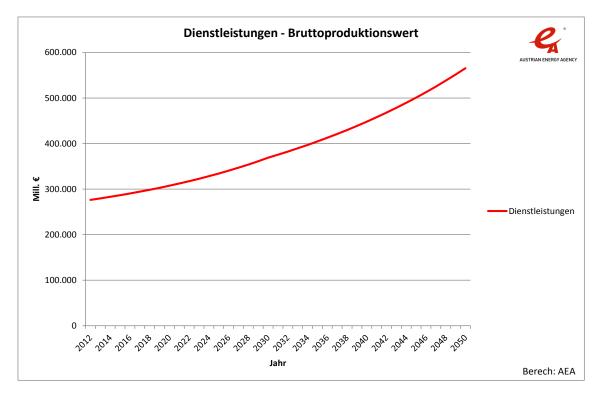


Abbildung 14: Dienstleistungen – Bruttoproduktionswert im Szenario "WEM"

Abbildung 15: Landwirtschaft – Bruttoproduktionswert im Szenario "WEM"

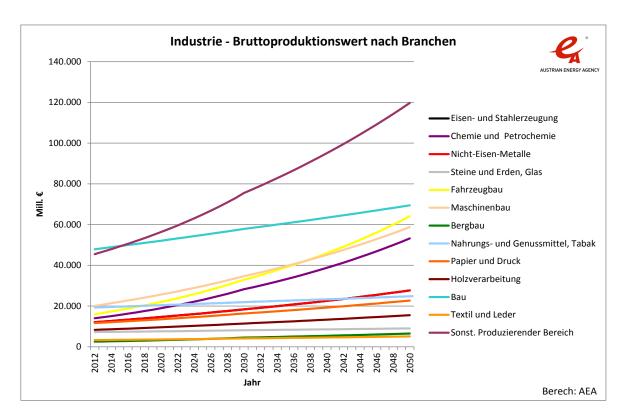


Abbildung 16: Industrie – Bruttoproduktionswert nach Branchen im Szenario "WEM"

2.1.6 Ergebnisse für die Stromnachfrage

Im Folgenden sind die Ergebnisse für die Stromnachfrage in den einzelnen Sektoren dargestellt. Die Stromnachfrage der Sektoren Haushalte und Dienstleistungen für Raumwärme, Warmwasser und Klimatisierung ist in diesen Ergebnissen jedoch nicht enthalten.

Tabelle 2 und Abbildung 17 zeigen die Entwicklung des Stromverbrauchs der Haushalte nach einzelnen Kategorien, exklusive des Stromverbrauchs für Raumwärme, Warmwasser und Klimatisierung.

Es sind drei Trends zu erkennen. Der Stromverbrauch für Beleuchtung ist stark rückläufig. Dieser Trend ist auf die Umsetzung der Vorgaben für Beleuchtung in der Ökodesign-Richtlinie zurückzuführen. Im Gegensatz dazu steigt der Verbrauch für IT und Unterhaltung, getrieben durch einen stark steigenden Sättigungsgrad der Haushalte mit diesen Geräten. Der Verbrauch der übrigen Kategorien bleibt ungefähr konstant, hier halten sich Effizienzverbesserungen und steigender Sättigungsgrad die Waage.

In Summe kommt es somit im Szenario "WEM" zu einem durchschnittlichen jährlichen Wachstum des Stromverbrauchs von 0,3 %.

Tabelle 2: Haushalte – Stromverbrauch nach Anwendungen im Szenario "WEM"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Beleuchtung	5.197	3.297	2.556	2.475	2.338	2.412	2.470	2.520	2.569
Kühlen	7.610	7.757	8.001	8.200	8.399	8.560	8.721	8.831	8.941
Kochen	8.298	8.466	8.767	9.028	9.279	9.474	9.659	9.783	9.906
IT und Unterhaltung	8.450	8.906	9.564	10.067	10.496	10.822	11.109	11.305	11.481
IT Infrastruktur	997	858	684	553	465	410	380	362	352
Waschen	5.426	5.568	5.908	6.258	6.565	6.776	6.936	7.034	7.124
Sonstiger Verbrauch	3.690	3.760	3.981	4.201	4.341	4.440	4.527	4.626	4.729
Total	39.669	38.613	39.461	40.781	41.883	42.894	43.803	44.462	45.102

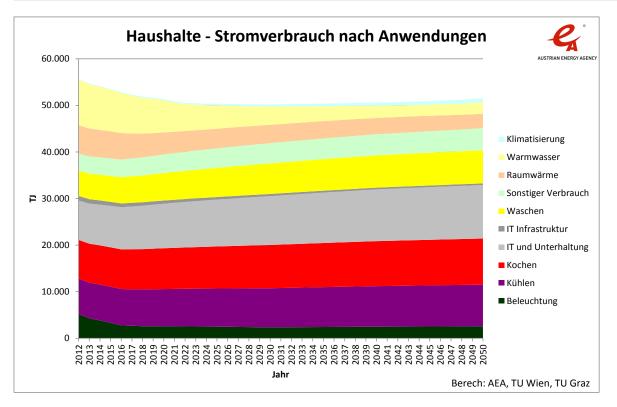


Abbildung 17: Haushalte – Stromverbrauch nach Anwendungen im Szenario "WEM"

Tabelle 3 und Abbildung 18 zeigen die Entwicklung des Stromverbrauchs der einzelnen Branchen der Industrie.

Getrieben vom Bruttoproduktionswert der jeweiligen Branche kommt es im Sektor Industrie zu einem Gesamtwachstum des Stromverbrauchs von 1,9 % p. a. bis 2050, wobei der Anstieg bis 2030 etwas stärker ausfällt als im Zeitbereich von 2030 bis 2050. In allen Branchen ist dabei eine Steigerung zu beobachten, die einzelnen Branchen zeigen aber eine sehr unterschiedliche Entwicklung.

Absolut betrachtet weist die Branche Chemie und Petrochemie den größten Zuwachs auf.

Tabelle 3: Industrie – Stromverbrauch nach Branchen im Szenario "WEM"

FT (1	2012	2015	2020	2025	2020	2025	2040	2045	2050
[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Eisen- und Stahlerzeugung	14.398	9.901	7.875	8.424	9.090	9.773	10.570	11.485	12.525
Chemie und Petrochemie	15.347	14.981	16.563	20.331	25.259	28.515	32.150	36.193	40.687
Nicht-Eisen-Metalle	3.524	3.722	4.242	4.925	5.664	6.174	6.706	7.266	7.857
Steine und Erden, Glas	6.573	6.243	6.327	7.112	8.274	8.724	9.021	9.290	9.530
Fahrzeugbau	2.745	3.198	3.750	4.307	5.109	5.677	6.343	7.104	7.968
Maschinenbau	14.777	14.571	16.322	20.163	24.627	27.757	31.084	34.636	38.447
Bergbau	3.861	5.609	8.135	10.082	12.614	13.827	15.066	16.336	17.644
Nahrungs- und Genussmittel, Taba	7.668	7.802	8.169	8.681	9.178	9.597	9.997	10.384	10.764
Papier und Druck	16.611	16.711	15.820	16.543	17.509	18.391	19.437	20.647	22.021
Holzverarbeitung	6.025	7.564	9.658	11.134	12.670	14.099	15.572	17.106	18.714
Bau	2.286	3.422	4.949	5.660	6.331	6.741	7.123	7.484	7.831
Textil und Leder	1.586	1.702	1.798	1.885	1.992	2.078	2.172	2.280	2.400
Sonst. Produzierender Bereich	5.962	4.957	4.316	4.622	5.177	5.694	6.348	7.117	7.991
Total	101.361	100.382	107.924	123.869	143.492	157.047	171.589	187.329	204.378

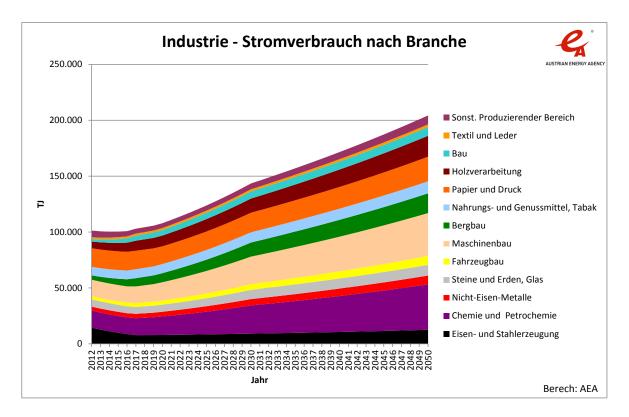


Abbildung 18: Industrie – Stromverbrauch nach Branchen im Szenario "WEM"

Tabelle 4 und Abbildung 19 zeigen die Entwicklung der Sektoren Dienstleistungen und Landwirtschaft sowie die Summe der bereits im Detail dargestellten Entwicklung der Haushalte und der Industrie.

Der Stromverbrauch der Dienstleistungen (ohne den Anteil für Raumwärme, Warmwasser und Klimatisierung) wächst ca. 0,7 % p. a. bis 2050, der der Landwirtschaft stagniert. Die gesamte Stromnachfrage – ausgenommen die Nachfrage für Raumwärme, Warmwasser und Klimatisierung der Haushalte und Dienstleistungen – wächst durchschnittlich um 1,3 % p. a. bis 2050.

Tabelle 4: Stromverbrauch nach Sektoren im Szenario "WEM"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Haushalte	39.669	38.613	39.461	40.781	41.883	42.894	43.803	44.462	45.102
Dienstleistungen	40.015	38.518	38.642	39.517	41.411	43.519	46.522	49.349	52.366
Landwirtschaft	2.852	2.422	2.275	2.277	2.319	2.358	2.426	2.521	2.644
Industrie	101.361	100.382	107.924	123.869	143.492	157.047	171.589	187.329	204.378
Total	183.896	179.935	188.302	206.444	229.104	245.818	264.340	283.661	304.491

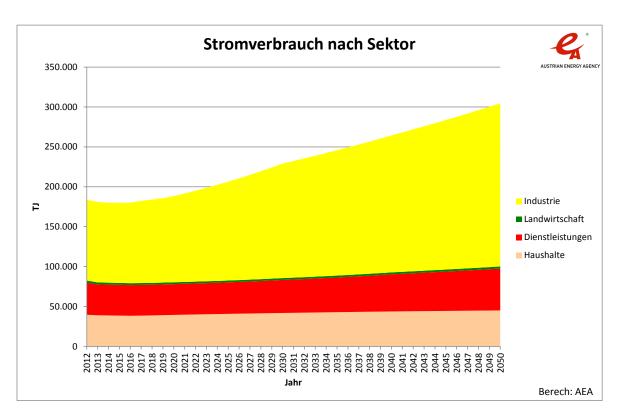


Abbildung 19: Stromverbrauch nach Sektoren im Szenario "WEM"

2.2 Szenario "WAM"

Aufbauend auf dem Szenario "WEM" wurde das Szenario "WAM" entwickelt, in dem zusätzliche Maßnahmen umgesetzt werden, die den Stromverbrauch der betrachteten Sektoren beeinflussen.

2.2.1 Maßnahmen

Für das Szenario "WAM" wurde angenommen, dass durch die Umsetzung des Energieeffizienzgesetzes und seiner Nachfolgeregelungen in den Jahren 2014 bis 2030 in allen Sektoren zusätzliche Einsparungen (d. h. über die Umsetzung der im Szenario "WEM" gesetzten Maßnahmen hinaus) im Stromverbrauch erreicht werden können. Über das Jahr 2030 hinaus wird angenommen, dass die Einsparungen in den Sektoren Haushalte, Dienstleistungen und Industrie konstant bleiben, während sie im Sektor Landwirtschaft leicht sinken. Der weitere leichte Anstieg der Einsparungen im Stromverbrauch der Haushalte nach 2030 entsteht aus modelltechnischen Gründen, ist aber von der Größenordnung her vernachlässigbar.

Tabelle 5: Jährliche Stromeinsparungen durch das Energieeffizienzgesetz im Szenario "WAM" nach Sektoren

[TJ]	2014	2015	2020	2025	2030	2035	2040	2045	2050
Haushalte	245	494	1.801	3.016	4.300	4.399	4.490	4.551	4.610
Dienstleistungen	229	457	1.600	2.650	3.700	3.700	3.700	3.700	3.700
Industrie	1.630	2.117	3.586	5.118	7.304	7.584	7.750	7.717	7.695
Landwirtschaft	-	14	113	176	235	234	232	231	230
Summe	2.104	3.082	7.100	10.960	15.538	15.917	16.172	16.200	16.235

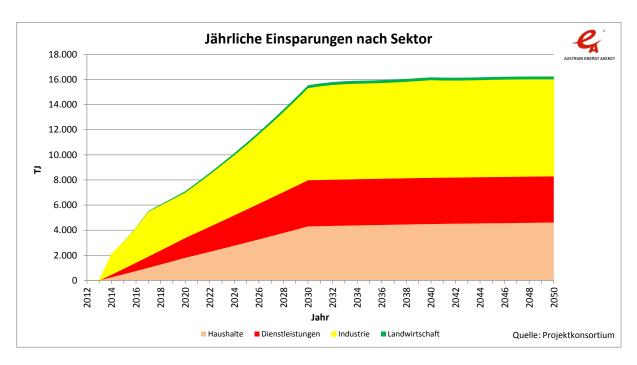


Abbildung 20: Jährliche Stromeinsparungen durch das Energieeffizienzgesetz im Szenario "WAM" nach Sektoren

2.2.2 Ergebnisse für die Stromnachfrage

Tabelle 6 und Abbildung 21 zeigen die Entwicklung des Stromverbrauchs der einzelnen Branchen der Industrie.

Durch die zusätzlichen Einsparungen im Szenario "WAM" kommt es in der Industrie zu einem verringerten Gesamtwachstum des Stromverbrauchs von ca. 1,8 % (Szenario "WEM" 1,9 %) p. a. bis 2050. Die Entwicklung der einzelnen Branchen ist auch in diesem Szenario sehr unterschiedlich.

Der höchste betragsmäßige Anstieg ist mit 25 PJ auch im Szenario "WAM" in der Chemie und Petrochemie zu verzeichnen.

Tabelle 6: Industrie - Stromverbrauch nach Branchen im Szenario "WAM"

[[]]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Eisen- und Stahlerzeugung	14.398	9.853	7.800	8.321	8.948	9.628	10.423	11.340	12.382
Chemie und Petrochemie	15.347	14.892	16.413	20.115	24.949	28.181	31.798	35.833	40.319
Nicht-Eisen-Metalle	3.524	3.715	4.231	4.909	5.642	6.151	6.683	7.243	7.834
Steine und Erden, Glas	6.573	6.093	6.080	6.782	7.839	8.287	8.598	8.894	9.161
Fahrzeugbau	2.745	2.892	3.162	3.367	3.607	4.085	4.679	5.410	6.241
Maschinenbau	14.777	14.389	15.985	19.658	23.891	26.965	30.255	33.796	37.600
Bergbau	3.861	5.607	8.132	10.078	12.610	13.823	15.062	16.332	17.640
Nahrungs- und Genussmittel, Tabal	7.668	7.680	7.971	8.428	8.867	9.286	9.694	10.098	10.495
Papier und Druck	16.611	16.055	14.802	15.215	15.778	16.656	17.723	18.992	20.417
Holzverarbeitung	6.025	7.502	9.557	10.997	12.483	13.900	15.367	16.901	18.511
Bau	2.286	3.296	4.786	5.467	6.098	6.504	6.888	7.260	7.618
Textil und Leder	1.586	1.702	1.798	1.885	1.992	2.078	2.172	2.280	2.400
Sonst. Produzierender Bereich	5.962	4.590	3.621	3.530	3.485	3.919	4.497	5.231	6.066
Total	101.361	98.265	104.338	118.751	136.188	149.463	163.840	179.612	196.683



Abbildung 21: Industrie – Stromverbrauch nach Branchen im Szenario "WAM"

Tabelle 7 und Abbildung 22 zeigen die Entwicklung der Sektoren Dienstleistungen und Landwirtschaft, der Haushalte sowie die Summe der bereits im Detail dargestellten Entwicklung in der Industrie.

Im Sektor Haushalte führen die Einsparungen zu einem Rückgang des jährlichen Wachstums auf 0,1 % p. a. Der Stromverbrauch für Dienstleistungen (ohne den Anteil für Raumwärme, Warmwasser und Klimatisierung) steigt im Szenario "WAM" im Zeitraum von 2012 bis 2050 um durchschnittlich 0,5 % p. a. Die Stromnachfrage des Sektors Landwirtschaft geht gegenüber dem Szenario "WEM" leicht zurück und sinkt bis 2030 um jährlich ca. 0,4 %.

Die gesamte Stromnachfrage – ausgenommen die Nachfrage für Raumwärme, Warmwasser und Klimatisierung der Haushalte und Dienstleistungen – wächst durchschnittlich um 1,2 % p. a. bis 2050.

Tabelle 7: Stromverbrauch nach Sektoren im Szenario "WAM"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Haushalte	39.669	38.193	37.864	38.097	38.036	38.959	39.788	40.400	40.993
Dienstleistungen	40.015	38.039	36.947	36.668	37.400	39.503	42.501	45.316	48.325
Landwirtschaft	2.852	2.408	2.162	2.101	2.083	2.124	2.193	2.290	2.414
Industrie	101.361	98.265	104.338	118.751	136.188	149.463	163.840	179.611	196.683
Total	183.896	176.905	181.311	195.617	213.707	230.049	248.322	267.618	288.416

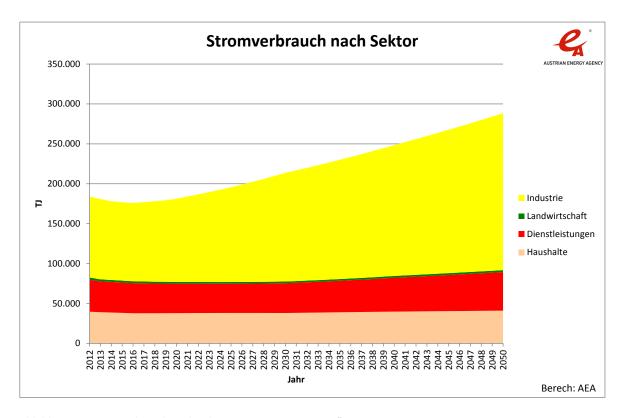


Abbildung 22: Stromverbrauch nach Sektoren im Szenario "WAM"

2.3 Szenario "WAM+"

Zusätzlich zu den im Rahmen der Berichtspflichten geforderten Szenarien "WEM" und "WAM" wurde ein Szenario "WAM+" entwickelt, das zur Unterstützung für den Diskussionsprozess zum klima- und energiepolitischen Rahmen 2030/2050 eingesetzt werden soll. Dieses Szenario baut auf dem Szenario "WAM" auf und deckt hinsichtlich der wirksamen Annahmen den Zeitbereich bis 2050 ab.

2.3.1 Annahmen

Für das Szenario "WAM+" wurde eine eigene *Storyline* entwickelt, die den Weg und die Rahmenbedingungen der Entwicklung des Energiesystems bis 2050 beschreibt (siehe auch Kapitel 4). Basierend auf dieser Storyline wurden gemeinsam mit dem Umweltbundesamt Annahmen getroffen, wie sich der Stromverbrauch der einzelnen Sektoren entwickeln wird.

Für den Sektor Haushalte wurde angenommen, dass der Verbrauch der einzelnen Haushalts-Anwendungen ab dem Jahr 2031 um 1 % p.a. und dann ab dem Jahr 2046 um 1,5 % p.a. sinkt. Ausgenommen hiervon sind die Anwendungen Beleuchtung sowie IT-Infrastruktur, für die eine geringere Reduktionsrate von 0,1 % p.a. angenommen wird. Die Reduktionsrate des Sonstigen Verbrauchs bleibt von 2031 bis 2050 konstant auf 1 % p.a. (Tabelle 8).

Tabelle 8: Jährliche Verbrauchsreduktion nach Haushalts-Anwendungen im Szenario "WAM+"

Reduktion p.a.	ab 2031	ab 2046
Beleuchtung	0,1%	
Kühlen	1,0%	1,5%
Kochen	1,0%	1,5%
IT und Unterhaltung	1,0%	1,5%
IT Infrastruktur	0,1%	
Waschen	1,0%	1,5%
Sonstiger Verbrauch	1,0%	

Für den Sektor Dienstleistungen wurde angenommen, dass der Stromverbrauch ab 2031 um jährlich 1 % absinkt. Im Sektor Landwirtschaft kommt es zu einem Rückgang um 0,5 % p.a., jedoch schon ab dem Jahr 2021. Für den Sektor Industrie wurde unterstellt, dass der Stromverbrauch bis 2050 im Prinzip auf dem heutigen Niveau stagniert.

2.3.2 Ergebnisse

Tabelle 9 und Abbildung 23 zeigen die Entwicklung des Stromverbrauchs der einzelnen Industriebranchen.

Durch die zusätzlichen Einsparungen im Szenario "WAM+" bis 2050 kommt es in der Industrie zu einem auf dem Niveau von 2012 stabilisierten Gesamtstromverbrauch. Die Entwicklung der einzelnen Branchen ist auch in diesem Szenario sehr unterschiedlich.

Der höchste betragsmäßige Anstieg ist mit 5,8 PJ bei den Nicht-Eisen-Metallen zu verzeichnen, gefolgt von 5,4 PJ bei Papier und Druck. Starke Rückgänge sind in den Branchen Holzverarbeitung (- 3 PJ), Steine und Erden, Glas (-1,9 PJ) und Bergbau (-1,9 PJ) zu verzeichnen.

Tabelle 9: Industrie – Stromverbrauch nach Branchen im Szenario "WAM+"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Eisen- und Stahlerzeugung	14.398	13.701	14.380	15.908	15.914	15.528	15.298	15.029	14.781
Chemie und Petrochemie	15.346	15.593	16.522	17.102	17.458	17.759	18.014	18.056	17.678
Nicht-Eisen-Metalle	3.524	5.166	7.799	9.384	10.034	9.920	9.809	9.599	9.352
Steine und Erden, Glas	6.573	5.532	5.104	4.681	4.261	4.374	4.510	4.624	4.675
Fahrzeugbau	2.745	2.893	3.249	3.342	3.413	3.261	3.105	2.939	2.762
Maschinenbau	14.776	15.037	15.682	15.652	15.502	15.720	15.713	15.397	14.725
Bergbau	3.861	3.794	3.810	3.542	3.238	2.814	2.459	2.174	1.966
Nahrungs- und Genussmittel, Taba	7.668	7.201	6.650	5.963	5.410	5.503	5.648	5.835	6.046
Papier und Druck	16.611	16.020	15.641	15.164	14.314	16.041	17.936	19.979	22.007
Holzverarbeitung	6.025	5.620	4.898	4.122	3.444	3.338	3.229	3.113	2.994
Bau	2.286	2.065	1.948	1.883	1.789	1.783	1.762	1.688	1.518
Textil und Leder	1.586	1.445	1.290	1.135	1.002	869	760	672	598
Sonst. Produzierender Bereich	5.961	5.690	5.372	5.034	4.710	4.719	4.733	4.747	4.745
Total	101.359	99.757	102.346	102.912	100.490	101.629	102.975	103.852	103.848

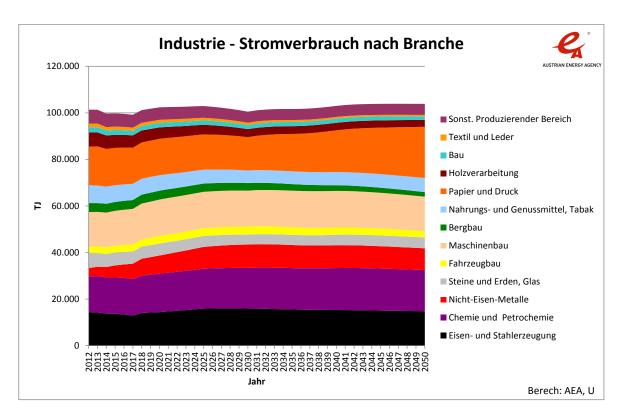


Abbildung 23: Industrie – Stromverbrauch nach Branchen im Szenario "WAM+"

Tabelle 10 und Abbildung 24 zeigen die Entwicklung des Stromverbrauchs der Sektoren Dienstleistungen und Landwirtschaft, der Haushalte sowie die Summe der bereits im Detail dargestellten Entwicklung in der Industrie.

Im Sektor Haushalte führen die Einsparungen zu einem Rückgang des Stromverbrauchs um ca. 8 PJ, der Stromverbrauch für Dienstleistungen (ohne den Anteil für Raumwärme, Warmwasser und Klimatisierung) geht im Szenario "WAM+" im Zeitraum von 2012 bis 2050 um 9 PJ zurück. Die Stromnachfrage des Sektors Landwirtschaft geht gegenüber dem Szenario "WAM" nochmals stark zurück und sinkt bis 2050 um 1 PJ.

Die gesamte Stromnachfrage – ausgenommen die Nachfrage für Raumwärme, Warmwasser und Klimatisierung der Haushalte und Dienstleistungen – sinkt um ca. 0,2 % p.a. und ist im Jahr 2050 im Vergleich zum Szenario "WAM" um 121 PJ geringer, wobei der Großteil des Rückgangs auf den Sektor Industrie zurückzuführen ist.

Tabelle 10: Stromverbrauch nach Sektoren im Szenario "WAM+"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Haushalte	39.669	38.193	37.864	38.190	36.894	35.539	34.061	32.699	30.801
Dienstleistungen	40.015	38.039	36.947	36.779	36.301	35.793	34.097	32.510	31.017
Landwirtschaft	2.852	2.408	2.162	2.109	2.057	2.006	1.956	1.908	1.861
Industrie	101.359	99.757	102.346	102.912	100.490	101.629	102.975	103.852	103.848
Total	183.894	178.397	179.319	179.990	175.742	174.967	173.089	170.969	167.527

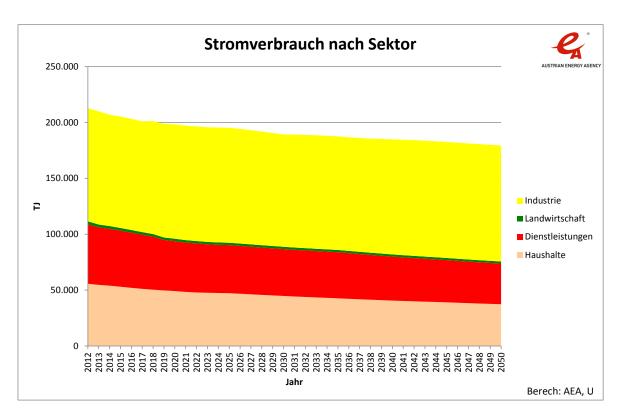


Abbildung 24: Stromverbrauch nach Sektoren im Szenario "WAM+"

3 Strom- und Fernwärmeaufbringung

Zur Simulation der Strom- und Fernwärmeaufbringung wurde das Modul Strom- und Fernwärmeerzeugung des Österreich-Modells verwendet. Dieses Modul ist ein lineares Modell, das die Erfüllung der Strom- und Fernwärmenachfrage unter Optimierung der Gesamtsystemkosten ermittelt. Die Berechnung der Strom- und Fernwärmeproduktion aus unternehmenseigenen Anlagen sowie aus Anlagen zur Verwertung von Abfall und Ablauge erfolgte durch den Projektpartner Umweltbundesamt unter Verwendung eigener Berechnungsmodelle.

3.1 Szenario "WEM"

3.1.1 CO₂-Zertifikatspreise

Ausgehend von den historischen Preisen für CO_2 -Emissionsrechte an der Strombörse EEX (European Energy Exchange) wurde die weitere Preisentwicklung bis 2050 vom Projektkonsortium auf Basis des PRIMES Referenz-Szenarios 2013 (European Commission, 2013) festgelegt (vgl. Abbildung 25).

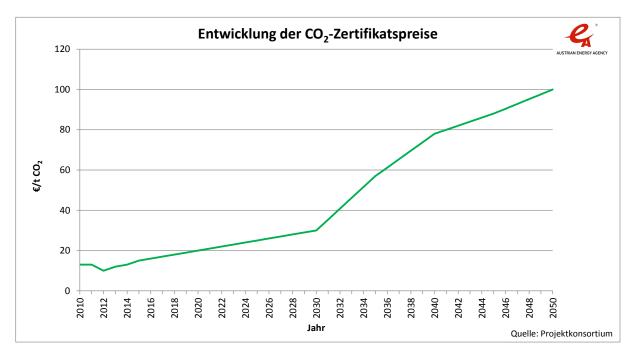


Abbildung 25: Entwicklung der CO₂-Zertifikatspreise im Szenario "WEM"

Diese Vorgabe impliziert die Annahme, dass Österreich im europäischen Emissionshandelssystem Preisnehmer ist, d. h. dass Entwicklungen in Österreich keinen bzw. einen vernachlässigbaren Einfluss auf Zertifikatspreise haben.

3.1.2 Energieträgerpreise

In der folgenden Abbildung sind die unterstellten Preisentwicklungen für die Energieträger Steinkohle, Erdöl und Erdgas und Strom (Importpreis) dargestellt. Diese wurden vom Umweltbundesamt übermittelt und

basieren auf dem "Current Policy Scenario" des World Energy Outlook 2013 der IEA (IEA, 2013). Die Stromimportpreisentwicklung wurde auf Basis von (Prognos/EWI/GWS, 2011) unter Verwendung aktueller Stromimportpreise berechnet.

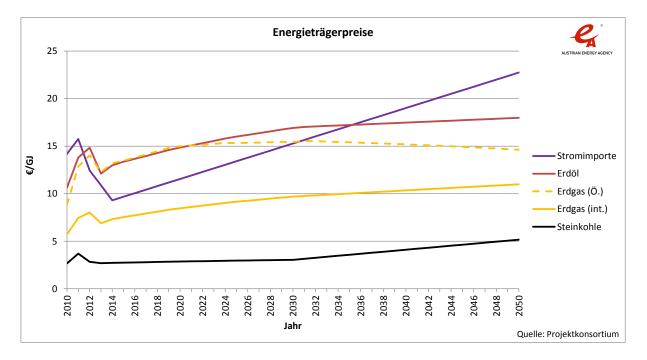


Abbildung 26: Entwicklung der Energieträgerpreise im Szenario "WEM"

3.1.3 Wasserkraft

Der Beitrag der Wasserkraft zur Stromerzeugung setzt sich aus den Beiträgen von vier Kraftwerkstypen zusammen:

- Laufkraftwerke > 10 MW
- Speicherkraftwerke > 10 MW
- Kleinwasserkraftwerke < 10 MW
- Unternehmenseigene Anlagen

Die Stromerzeugung aus Speicherkraftwerken beinhaltet keine Produktion aus Pumpspeicherbetrieb, sondern nur aus natürlichem Zufluss. Der Beitrag der unternehmenseigenen Anlagen ist in der industriellen Erzeugung (3.1.6) enthalten. Da die Energiebilanz für das Jahr 2013 (Statistik Austria, 2014) zum Zeitpunkt der Szenarienerstellung noch nicht verfügbar war, wurde das Modell hinsichtlich der Stromerzeugung aus Wasserkraft auf Basis statistischer Daten (E-Control, 2014) kalibriert. Bei diesen Daten wird allerdings nicht zwischen Anlagen von Energieversorgungsunternehmen (EVU) und industrieller Eigenerzeugung unterschieden. Daher wurde die Erzeugung in von EVU betriebenen Anlagen auf Basis von Daten aus dem Vorjahr und der Entwicklung der Volllaststunden aller Wasserkraftwerke abgeschätzt. Die Abschätzung ergab eine Erzeugung

von rund 41,1 TWh. ⁸ 58 % davon stammen aus Laufwasserkraftwerken mit über 10 MW Leistung, 24 % aus Speicherkraftwerken und der Rest aus Kleinwasserkraftwerken.

Hinsichtlich des künftigen Ausbaus von Großwasserkraft wurde das ausbaufähige Potential mittels eines Bottom-up-Ansatzes (d.h. auf Basis laufender und angekündigter Kraftwerksprojekte) mit 312 MW abgeschätzt. Es wird davon ausgegangen, dass dieser Ausbau tatsächlich erfolgt und die zusätzliche Leistung im Jahr 2022 vollständig zur Verfügung steht. Die unterstellte künftige Entwicklung bei Kleinwasserkraft basiert auf den Zielen des Ökostromgesetzes (siehe Abschnitt 3.1.4).

Für den Bestand an österreichischen Pumpspeicherkraftwerken (PSP) kann davon ausgegangen werden, dass sich die durchschnittlichen Energieverluste über einen gesamten Zyklus bestehend aus Pumpen und Turbinieren auf rund 30 % belaufen. Dieser Wert ist im Modell einheitlich für alle Pumpspeicherkraftwerke unterstellt. Darüber hinaus wird ausgehend von historischen Daten davon ausgegangen, dass sich die Stromerzeugung in Pumpspeicherkraftwerken auf mindestens 8,4 % der gesamten Stromaufbringung beläuft.⁹

Weiters ist im Modell unterstellt, dass es durch die Umsetzung der Wasserrahmenrichtlinie (WRRL) zu Einbußen beim Regelarbeitsvermögen von Wasserkraftwerken kommt. Andererseits ist bei den betroffenen Anlagen von einem Optimierungspotential auszugehen, sodass die Einbußen durch technische und konstruktive Maßnahmen weitestgehend kompensiert werden sollten. Die Berücksichtigung dieser Effekte erfolgte wie im Rahmen der Szenarienentwicklung für den EU Monitoring Mechanism 2013. Für eine detaillierte Beschreibung der Implementierung wird daher auf (Österreichische Energieagentur, 2013) verwiesen.

3.1.4 Anlagen zur Nutzung erneuerbarer Energieträger

Grundsätzlich wird im Österreich-Modell zwischen folgenden Stromerzeugungsanlagen auf Basis erneuerbarer Energie unterschieden:

- KWK auf Basis fester Biomasse
- KWK auf Basis flüssiger Biomasse
- Biogasanlagen
- Klärgas- und Deponiegasanlagen
- Kleinwasserkraftwerke
- Windkraftanlagen
- Photovoltaik-Anlagen
- Geothermische Stromerzeugung

Der Bau und Betrieb dieser Anlagentypen wurde in der Vergangenheit – mit Ausnahme von Eigenerzeugung in der Industrie – im Wesentlichen durch das Ökostromgesetz (ÖSG) angestoßen. Es ist davon auszugehen, dass zumindest in der näheren Zukunft das ÖSG bzw. diesbezügliche Verordnungen für den Ausbau erneuerbarer

⁸ Nach Veröffentlichung der Energiebilanz 2013 (Statistik Austria, 2014) wurde das Ergebnis dieser Abschätzung überprüft: Die Abweichung von Daten der Energiebilanz beträgt weniger als 1 % und kann daher im Kontext der Gesamtszenarien als vernachlässigbar betrachtet werden.

⁹ Diese Festlegung ist erforderlich, da trotz der Implementierung unterjähriger Zeitschritte im Rahmen eines Optimierungsmodells mit "perfect foresight" und ohne Abbildung von Regel- und Ausgleichsenergiemärkten keine ausreichend realitätsnahe Modellierung von Pumpspeicherkraftwerken erfolgen kann. Obwohl durch die Einführung unterjähriger Zeitschritte deren Nutzen grundsätzlich abgebildet wird (d.h. die vorhandenen Pumpspeicherkapazitäten zur Energiespeicherung im Modell auch tatsächlich eingesetzt werden), würden bei Weglassen einer auf historischen Daten basierenden Mindesterzeugung von Pumpspeicherkraftwerken die Speicherverluste in den simulierten Jahren aus verschiedenen Gründen weitaus geringer ausfallen als in der Realität.

Stromerzeugungsanlagen maßgeblich sein werden¹⁰, wenn auch substantielle Änderungen der Förderinstrumente im ÖSG unmittelbar bevorstehen.

Da eine endogene Modellierung von Entwicklungen bei Ökostromanlagen ohne genaue Kenntnis zukünftiger Förderinstrumente nicht möglich ist, wurden die Entwicklungen in diesem Bereich bis 2020 (bzw. zum Teil darüber hinaus) exogen vorgegeben. Konkret wurden unter der Annahme, dass es zu einer Erreichung der im ÖSG festgelegten Ausbauziele kommt, für jede Technologie Zeitreihen der Kapazitätsentwicklung festgelegt.

3.1.4.1 Ausbauziele laut Ökostromgesetz

Im Juli 2011 wurde vom Österreichischen Parlament das Ökostromgesetz 2012 (BGBI. I, Nr. 75/2011) beschlossen. Erklärtes Ziel des ÖSG 2012 war ein Anteil von 15 % Ökostrom bis 2015, gemessen an der Abgabe an Endverbraucher des öffentlichen Netzes, die von neuen oder erweiterten Ökostromanlagen mit einem Vertragsverhältnis mit der ÖMAG sowie durch Anlagen mit einem Anspruch auf Investitionszuschuss erzeugt werden.

Konkret werden als Teilziele für 2010 bis 2015 die mengenmäßig wirksame Errichtung von 700 MW Wasserkraft (+3,5 TWh Erzeugung in einem Regeljahr), davon 350 MW Großwasserkraft (> 20 MW, mit +1,75 TWh Erzeugung in einem Regeljahr), 200 MW Klein- und 150 MW mittlere Wasserkraft (zusammen +1,75 TWh Erzeugung in einem Regeljahr), die Errichtung von 700 MW Windkraft (+1,5 TWh durchschnittliche Erzeugung), 500 MW Photovoltaik (+0,5 TWh durchschnittliche Erzeugung) sowie (unter der Bedingung einer nachgewiesenen Rohstoffverfügbarkeit) die Errichtung von Biomasse- und Biogasanlagen mit einer gesamten elektrischen Leistung von 100 MW (+0,6 TWh durchschnittliche Erzeugung) genannt.

Für den Zeitraum von 2010 bis 2020 werden als Ausbauziele für Wasserkraft 1.000 MW bzw. 4 TWh¹¹, für Windkraft 2.000 MW bzw. 4 TWh¹¹, für Biomasse- und Biogasanlagen 200 MW bzw. 1,3 TWh¹¹ sowie für Photovoltaik 1.200 MW bzw. 1,2 TWh¹¹ festgelegt. Für die Zeit nach 2020 wurde angenommen, dass das ÖSG nicht verlängert bzw. keine Nachfolgeregelung in Kraft treten wird.

3.1.4.2 Entwicklung der Erzeugungskapazitäten

Der Zubau an Erzeugungskapazitäten von Windkraftanlagen, KWK-Anlagen auf Basis biogener Brennstoffe sowie Wasserkraftwerken folgt im WEM-Szenario den Ausbauzielen des ÖSG bis 2020. Die Ausgangsbasis des derzeitigen Bestandes wurde aus statistischen Daten abgeleitet. Ab 2020 ist "freier Zubau" möglich. Das heißt, dass ab diesem Zeitpunkt die Investitionen in Anlagen auf Basis erneuerbarer Energie im Modell Gegenstand der ökonomischen Optimierung sind. Grob gesagt muss also ab 2020 ohne Inanspruchnahme von Förderungen Wirtschaftlichkeit gegeben sein, damit es im Szenario zu einem weiteren Zubau kommt.

Die Entwicklung bei **Bestandsanlagen auf Basis biogener Brennstoffe** wird wesentlich davon abhängen, welcher Anteil der Anlagen nach Ablauf der regulären Förderdauer auf Basis der im ÖSG vorgesehenen Nachfolgetarife weiterbetrieben wird bzw. werden kann. ¹² Im WEM-Szenario wurde unterstellt, dass 25 % der Bestandsanlagen nach Ablauf der regulären Förderdauer außer Betrieb gehen, da sie entweder die Kriterien für

¹⁰ Genau genommen trifft diese Aussage nicht auf alle Technologien zu. Insbesondere bei Photovoltaik, die einerseits zunehmend auch ohne Förderungen wirtschaftlich wird bzw. ist, und andererseits über Investitionszuschüsse des Klima- und Energiefonds bzw. der Bundesländer gefördert wird, ist ein signifikanter Ausbau außerhalb der ÖSG-Förderungen zu erwarten.

¹¹ Bezogen auf die Ökostromerzeugung eines Durchschnittsjahres

¹² In der Regel haben diese Ökostromanlagen über einen Zeitraum von 15 Jahren Anspruch auf die ursprünglich garantierten Einspeisetarife. Danach können sie für weitere fünf Jahre reduzierte Tarife erhalten, sofern gewisse Kriterien – in erster Linie hinsichtlich der Abwärmenutzung – erfüllt werden.

Nachfolgetarife nicht erfüllen, oder auf Basis der Nachfolgetarife nicht wirtschaftlich betrieben werden können. Diese Bestandsanlagen gehen im Zeitraum 2018 bis 2022 außer Betrieb. Für den restlichen Anlagenbestand wurde unterstellt, dass dafür Nachfolgetarife in Anspruch genommen werden, und die Anlagen damit weitere fünf Jahre in Betrieb bleiben. Im Jahr 2027 sind schließlich keine Bestandsanlagen mehr in Betrieb.

Für den Bestand an **Wasserkraftwerken und Windkraftanlagen** wurde angenommen, dass dieser über den gesamten Simulationszeitraum in Betrieb bleibt bzw. es aufgrund von Repoweringmaßnahmen zu keiner Abnahme der Erzeugungskapazitäten kommt. Freier Zubau nach 2020 wurde bei Wasserkraft in Hinblick auf die weitgehende Ausschöpfung der Ausbaupotentiale ausgeschlossen. Bei Windkraft hingegen wurde eine Ausweitung der Erzeugungskapazitäten durch freien Zubau ab 2020 zugelassen.

Die Entwicklung der Erzeugungskapazitäten von **Photovoltaik-Anlagen** wurde als einzige für den gesamten Simulationszeitraum, also bis 2050, exogen festgelegt. Konkret wurde unterstellt, dass die installierte Kapazität bis 2050 auf 18 GWp ansteigt, wobei der Anstieg im Zeitraum 2017 bis 2040 nahezu linear verläuft und danach eine Sättigung erfährt. Diese Vorgehensweise bei Photovoltaik wurde aus mehreren Gründen gewählt, wobei insbesondere die ausgesprochen dynamische Entwicklung der letzten Jahre und die sehr großen Wachstumspotentiale von Photovoltaik zu nennen sind.

Von einer endogenen Modellierung des PV-Ausbaus durch freien Zubau wurde hier aus folgenden Gründen abgesehen: Für eine realitätsnahe Abbildung kostenoptimaler Investitionsentscheidungen wäre eine detaillierte Modellierung verschiedenster Marktsegmente erforderlich. Für die Wirtschaftlichkeit der klassischen dezentralen PV-Anlagen auf Dächern von Eigenheimen sind neben Entwicklungen des Haushaltsstrompreises individuell sehr unterschiedliche Parameter wie die Haushaltsgröße, Jahresstromverbrauch, der erzielbare Eigenverbrauchsanteil und die Geometrie und Ausrichtung des Gebäudes ausschlaggebend. Bei größeren Eigenerzeugungsanlagen (von Produktionsbetrieben, Supermärkten o.ä.) stellt insbesondere der Strombezugspreis eine schwer verallgemeinerbare Einflussgröße auf die Wirtschaftlichkeit dar. Darüber hinaus stellt sich die Frage, wie Netztarife für verschiedenen Stromkunden in Zukunft ausgestaltet werden. Eine sukzessive Verschiebung der Gesamtkosten von Arbeits- zu Grundpreisen, die aus derzeitiger Sicht (insbesondere bei einem weiterhin starken Zubau dezentraler PV-Anlagen) nicht unwahrscheinlich ist, hätte mitunter erhebliche Auswirkungen auf die Wirtschaftlichkeit von PV-Anlagen. Eine Optimierung der Gesamtsystemkosten, wie sie im Rahmen des Modells erfolgt, würde ohne Berücksichtigung derartiger Detailaspekte zu keinem realistischen Ausbaupfad führen. Da eine Modellierung dieser Detailaspekte im Rahmen des Projektes nicht möglich war, wurde als alternative Vorgehensweise die exogene Vorgabe einer vom Projektkonsortium als plausibel erachteten Kapazitätsentwicklung gewählt.

Für die quantitativ wenig bedeutsamen Anlagentypen Klär- und Deponiegasanlagen sowie geothermische Stromerzeugung wurde vereinfachend davon ausgegangen, dass es zu keinem Zubau kommt. Es wird jedoch unterstellt, dass Bestandsanlagen für die gesamte Simulationsdauer in Betrieb bleiben bzw. die bestehenden Erzeugungskapazitäten durch Repowering erhalten bleiben.

3.1.5 Anlagen auf Basis fossiler Brennstoffe

Anlagen auf Basis fossiler Brennstoffe umfassen KWK-Anlagen, Kraftwerke und Heizwerke, die mit Kohle, Erdgas und Öl betrieben werden. Wie im Bereich der Stromerzeugung aus erneuerbaren Energiequellen erfolgt die Modellierung, ausgehend von statistischen Daten zur Kapazitäten, Strom- und Fernwärmeerzeugung, zum Teil auf Basis plausibler Annahmen, zum Teil durch endogene (Systemkosten-optimierende) Modellierung.

Aufgrund der überschaubaren Anzahl größerer Kohle- und Erdgas-Kraftwerke sowie -KWK-Anlagen in Österreich, sind diese im Modell als Einzelanlagen mit den jeweiligen technischen Spezifikationen (thermische und elektrische Leistung, Wirkungsgrad etc.) implementiert.

Die Entwicklung der künftig verfügbaren Erzeugungskapazitäten wurde in einem ersten Schritt auf Basis von Ankündigungen der jeweiligen Energieversorgungsunternehmen abgeschätzt. Für die Kohlekraftwerke Dürnrohr und Mellach wurden folgende Annahmen getroffen: Da für 2015 die Schließung des von der VERBUND Thermal Power GmbH & Co KG betriebenen Kraftwerksblocks Dürnrohr angekündigt wurde, wurde unterstellt, dass dieser ab 2015 nicht mehr zur Verfügung steht. Für den von der EVN AG betriebenen Kraftwerksblock Dürnrohr wurde von einem Betrieb bis 2024 ausgegangen, für die KWK-Anlage Mellach bis 2020.

Bei fast allen größeren Erdgas-KWK-Anlagen wurde davon ausgegangen, dass sie aufgrund ihrer fundamentalen Bedeutung für städtische Fernwärmeversorgung auch längerfristig in Betrieb bleiben. Für Erdgas-Anlagen mit geringer bzw. ohne Fernwärmeauskopplung wurde unterstellt, dass die Kapazitäten grundsätzlich verfügbar bleiben; inwiefern diese Kapazitäten tatsächlich genutzt werden, wird jedoch modellendogen im Zuge der Systemkostenoptimierung ermittelt.

Einen Sonderfall stellt die GuD-Anlage Mellach der VERBUND Thermal Power GmbH & Co KG dar. Da das Kraftwerk im Jahr 2014 eingemottet wurde, steht dessen Kapazität (über 800 MW elektrische Leistung) ab 2015 nicht mehr zur Verfügung. Es kann jedoch davon ausgegangen werden, dass das Kraftwerk unter geänderten ökonomischen Rahmenbedingungen (in erster Linie höhere Großhandelsstrompreise) relativ kurzfristig wieder in Betrieb genommen werden kann. Für die Simulation wurde daher angenommen, dass das GuD-Kraftwerk Mellach ab 2020 grundsätzlich betriebsbereit ist. Ob und in welchem Ausmaß die Anlage ab 2020 tatsächlich zur Strom- und Fernwärmeerzeugung genutzt wird, ist Gegenstand der Optimierung.

Der Einsatz von Erdgas- und Öl-Heizwerken ebenso wie ein möglicher Ausbau der Erzeugungskapazitäten wird ab 2013 (Ende des Kalibrierungszeitraums) modellendogen bestimmt. Aus Plausibilitätsgründen wurde jedoch festgelegt, dass mindestens 10 % der Fernwärmeerzeugung aus Erdgas-Heizwerken stammen müssen, da Spitzenlastkessel in der Regel als Erdgaskessel ausgeführt sind.

3.1.6 Industrielle Erzeugung und Abfallverbrennung

Die Erzeugung von Strom und Fernwärme aus unternehmenseigenen Anlagen (UEA) sowie aus Anlagen zur Abfallverbrennung wurde vom Umweltbundesamt berechnet und vollständig in das Modell übernommen (Tabelle 11).

Tabelle 11: Strom- und Fernwärmeaufbringung aus UEA im Szenario "WEM"

Unternehmenseigene Anlagen[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Strom	30.669	33.328	33.926	34.508	35.074	35.394	35.790	36.227	36.662
Fernwärme	8.815	5.685	5.801	5.915	6.027	6.124	6.229	6.338	6.446

3.1.7 Stromimporte

Die Stromimporte wurden im Rahmen der Optimierung des Gesamtsystems ermittelt. Sie ergaben sich aufgrund ihrer Wirtschaftlichkeit sowie der Begrenzungen verfügbarer inländischer Stromerzeugungskapazitäten.

3.1.8 Verteilungsverluste von Strom und Fernwärme

Für die Verteilung von Strom wurden auf Basis historischer Daten für den gesamten Betrachtungszeitraum spezifische Verluste von 4,7 % der Stromaufbringung angenommen. Die Berücksichtigung der Verluste der Fernwärmeverteilung erfolgte differenziert nach der Quelle der erzeugten Fernwärme (Tabelle 12).

Tabelle 12: Fernwärmeverluste nach Quellen

Fernwärmequelle	Verluste
Erdgas	8%
Kohle	12%
Öl	12%
Biomasse	16%
Geothermie	16%
Abfallverbrennung	12%
Unternehmenseigene Anlagen	12%

3.1.9 Verbrauch des Sektors Energie

Der Stromverbrauch des Sektors Energie wird im Österreich-Modell endogen berechnet und über einen Proportionalitätsfaktor an die Entwicklung des Strom- und Fernwärmeumwandlungsausstoßes gekoppelt. Der Faktor basiert auf historischen Daten und wurde aus der Energiebilanz (Statistik Austria, 2014) abgeleitet.

3.1.10 Strom- und Fernwärmenachfrage

Die Strom- und Fernwärmeaufbringung wird im Modell durch die Strom- und Fernwärmenachfrage getrieben. Zum Teil erfolgte die Berechnung der Nachfrage innerhalb des Österreich-Modells; die übrige Nachfrage wurde durch die Ergebnisse der Berechnungen der Partner Umweltbundesamt, TU Wien und TU Graz vorgegeben (Tabelle 13).

Mit der modellierten Stromnachfrage in 2.1.6 bzw. Tabelle 4 sowie der Stromnachfrage in Tabelle 14 ergibt sich die Gesamtstromnachfrage (Tabelle 15).

Tabelle 13: Quellen für die Strom- und Fernwärmenachfrage

Nachfrage		Quelle
Stromnachfrage		
Raumwärme, Warmwasser, Klimatisierung und Hilfsenergie - Haushalte	exogen	TU Wien
Übrige Nachfrage - Haushalte	endogen	AEA/Österreichmodell
Raumwärme, Warmwasser, Klimatisierung und Hilfsenergie - Dienstleistungen	exogen	TU Wien
Übrige Nachfrage - Dienstleistungen	endogen	AEA/Österreichmodell
Industrie	endogen	AEA/Österreichmodell
Landwirtschaft	endogen	AEA/Österreichmodell
Pipelines	exogen	Umweltbundesamt
Schienen- und Strassenverkehr	exogen	Umweltbundesamt/TU Graz
Verbrauch Sektor Energie	endogen	AEA/Österreichmodell
Fernwärmenachfrage		
Haushalte	exogen	TU Wien
Dienstleistungen	exogen	TU Wien
Industrie	exogen	Umweltbundesamt
Landwirtschaft	exogen	Umweltbundesamt

Tabelle 14: Stromnachfrage im Szenario "WEM": Teilergebnisse der Partner

Stromnachfrage [TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Haushalte									
Raumwärme, Warmwasser,	18.430	17.418	14.592	12.415	11.288	10.547	9.912	9.649	9.674
Klimatisierung, Hilfsenergie	16.450	17.410	14.592	12.415	11.200	10.547	9.912	9.049	9.074
Dienstleistungen									
Raumwärme, Warmwasser,	14.231	13.631	10.015	8.396	7.691	7.432	7.342	7.281	7.277
Klimatisierung, Hilfsenergie	14.231	15.051	10.015	0.590	7.091	7.432	7.542	7.201	7.277
Verkehr									
Schienenverkehr, Straßenverkehr,	10.580	11.309	12.432	15.661	20.903	25.401	28.665	30.996	32.919
sonstiger Landverkehr	10.560	11.509	12.452	15.001	20.903	25.401	26.005	30.990	32.919
Pipelines	518	622	673	682	703	765	810	830	859

Tabelle 15: Gesamtstromnachfrage im Szenario "WEM"

[LT]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Verkehr	11.098	11.932	13.104	16.343	21.606	26.166	29.475	31.826	33.778
Haushalte	55.635	53.521	51.362	50.317	50.184	50.381	50.594	50.909	51.488
Dienstleistungen	52.956	50.719	47.076	46.279	47.489	49.432	52.313	55.032	58.005
Landwirtschaft	2.852	2.422	2.275	2.277	2.319	2.358	2.426	2.521	2.644
Industrie	101.361	100.382	107.924	123.869	143.492	157.047	171.589	187.329	204.378
Verbrauch des Sektors Energie	22.222	24.272	25.725	27.655	30.144	32.311	34.560	36.775	39.320
Transportverluste	12.127	11.985	12.536	13.486	14.715	15.774	16.873	17.954	19.197
Exporte	-	-	6.962	6.981	3.422	2.461	1.489	-	-
Total	258.251	255.233	266.964	287.207	313.372	335.929	359.319	382.347	408.810

Die Fernwärmenachfrage setzt sich zur Gänze aus Ergebnissen der Partner zusammen (Tabelle 16).

Tabelle 16: Gesamtfernwärmenachfrage im Szenario "WEM"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Haushalte	29.754	30.409	33.146	37.967	39.762	39.446	38.493	36.350	34.811
Dienstleistungen	34.337	30.830	32.226	32.640	31.373	29.097	26.848	23.365	20.932
Industrie	11.611	12.016	13.078	14.376	15.882	16.155	16.300	16.689	17.114
Landwirtschaft	417	381	393	404	416	418	421	423	426
Transportverluste	8.003	8.127	9.001	10.005	10.529	9.754	8.964	8.057	7.359
Total	84.121	81.763	87.844	95.393	97.962	94.871	91.027	84.884	80.642

3.1.11 Ergebnisse für die Strom- und Fernwärmeaufbringung

Tabelle 17 und Abbildung 27 zeigen die Stromaufbringung für das Szenario "WEM". Die inländische Stromproduktion steigt bis 2050 um durchschnittlich 0,95 % p. a. Beim Energieträger- bzw. Technologiemix kommt es insbesondere bis 2030 zu starken Verschiebungen: Die Stromerzeugung aus Kohle und Öl sinkt auf null. Strom aus Erdgas-Anlagen geht bis 2030 auf rund die Hälfte des Anteils an der Stromaufbringung im Jahr 2012 zurück. Der Anteil von Wasserkraft sinkt von ca. 60 % auf etwa die Hälfte der gesamten Aufbringung im Jahr 2030. Bei Stromerzeugung aus biogenen Energieträgern ist infolge des Auslaufens der ÖSG-Förderung ein Rückgang auf rund ein Drittel des Ausgangswertes zu verzeichnen. Zu einem deutlichen Zuwachs kommt es hingegen bei Windkraft und Solarstrom: Windenergie steigt von 3,4 auf 8,5 % und Solarstrom von 0,5 auf knapp 13 %. Der Beitrag von Importen gewinnt ebenfalls an Bedeutung: Stammten 2012 noch rund 5 % des Stromaufkommens aus ausländischer Erzeugung, sind es im Jahr 2030 im "WEM"-Szenario fast 12 %.

Nach 2030 setzen sich die wichtigsten Trends im Wesentlichen fort. Lediglich bei Erdgas kommt es wieder zu einem deutlichen Anstieg auf über 12 % der Gesamtaufbringung. Gegenüber dem Ausgangsjahr bedeutet das einen um 2 % höheren Anteil am Strommix. Windkraft und Photovoltaik tragen 2050 mit 27,5 % einen wesentlichen Teil zur Stromversorgung bei, während biogene Energieträger nur mehr in den Bereichen der Klär- und Deponiegasverstromung sowie in unternehmenseigenen Anlagen zur Stromerzeugung eingesetzt werden. Der Anteil von Wasserkraft beträgt aufgrund des steigenden Gesamtverbrauchs 2050 nur mehr 37 %.

⁻

¹³ Das Ergebnis für Erdgas-Anlagen spiegelt die ungünstigen Relationen von Erdgas- und Großhandelsstrompreisen wider. Dass die Bedeutung von Erdgas nicht noch stärker zurückgeht, liegt in erster Linie in der Bedeutung von Erdgas-KWK für städtische Fernwärmenetze begründet (siehe Abschnitt 3.1.5). In der Modellierung wurden keine zeitabhängigen Angebots- und Nachfragekurven für den Inlandsverbrauch, keine ausländische Stromnachfrage und auch keine speziellen Vertragsverhältnisse der Kraftwerksbetreiber (wie z. B. zur Bereithaltung von Ausgleichsenergie) berücksichtigt.

Tabelle 17: Stromaufbringung (exkl. PSP) im Szenario "WEM"

[1]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Unternehmenseigene Anlagen	30.669	33.328	33.926	34.508	35.074	35.394	35.790	36.227	36.662
Kohle-Kraftwerke+KWK	15.120	8.631	6.652	-	-	-	-	-	-
Öl-Kraftwerke+KWK	326	-	-	-	-	-	-	-	-
Erdgas-Kraftwerke+KWK	26.450	19.378	18.243	19.238	17.149	27.224	49.339	48.883	49.918
Abfall	3.443	3.645	4.012	4.012	4.012	4.012	4.012	4.012	4.012
Wasserkraft	152.492	135.941	146.862	149.578	149.578	149.578	149.578	149.578	149.578
Biomasse-KWK	5.035	5.667	5.643	2.951	1.257	710	-	-	-
Biogas	2.101	2.927	3.619	2.627	2.003	1.083	120	120	120
Geothermie	2	5	5	5	5	5	5	5	5
Photovoltaik	1.206	5.335	17.366	30.021	40.392	51.348	61.627	64.111	64.156
Wind	8.894	16.501	22.559	23.534	26.531	31.491	38.177	43.922	48.084
Importe	12.512	23.876	8.077	20.733	37.371	35.083	20.670	35.489	56.274
Total	258.251	255.233	266.964	287.207	313.372	335.929	359.319	382.347	408.810

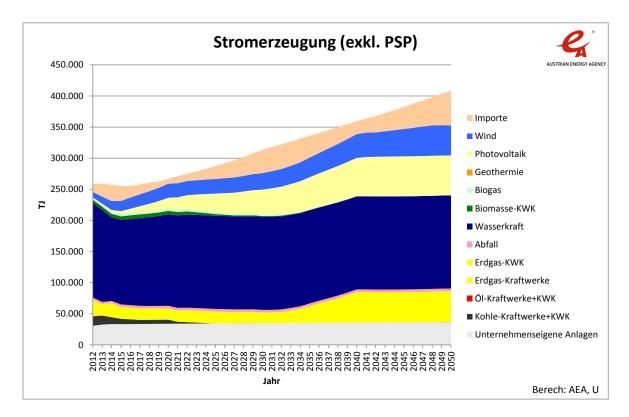


Abbildung 27: Stromaufbringung (exkl. PSP) im Szenario "WEM"

Tabelle 18 und Abbildung 28 zeigen die Fernwärmeaufbringung des Szenarios "WEM". Bis 2030 kommt es zu einem deutlichen Anstieg der Gesamtaufbringung. Die durchschnittliche Wachstumsrate im Zeitraum 2012 bis 2030 beträgt 0,85 %. Der Mehrbedarf an Fernwärme wird in erster Linie durch Biomasse-Heizwerke gedeckt. Darüber hinaus kommt es ab ca. 2020 zu einer sukzessiven Substitution von Biomasse-KWK-Anlagen durch Heizwerke. Diese Entwicklung ist insofern plausibel, als an derzeitigen Standorten von geförderten KWK-Anlagen nach Auslaufen der ÖSG-Förderungen Biomasse-Heizwerke die naheliegende Option zum Weiterbetrieb bestehender Nah-/Fernwärmenetze sind.

Wie bereits aus Abbildung 27 ersichtlich, kommt es in dem Szenario nach 2030 zu einem Ausbau von Erdgas-KWK (bzw. zu einer Revitalisierung bestehenden Kraftwerksstandorte). Diese Entwicklung spiegelt sich auch in Abbildung 28 wider: Statt Erdgas-Heizwerken kommen nach 2030 wieder verstärkt KWK-Anlagen zum Einsatz. Die gesamte Fernwärmeerzeugung aus Erdgas bleibt über den Betrachtungszeitraum – ebenso wie jener aus Abfallverbrennung und unternehmenseigenen Anlagen – relativ konstant.

Tabelle 18: Fernwärmeaufbringung im Szenario "WEM"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Unternehmenseigene Anlagen	8.815	5.685	5.801	5.915	6.027	6.124	6.229	6.338	6.446
Kohle-KWK	2.545	1.960	1.960	-	-	-	-	-	-
Öl-KWK	786	-	-	-	-	-	-	-	-
Öl-Heizwerke	1.236	-	-	-	-	-	-	-	-
Erdgas-KWK	21.728	16.214	14.855	16.047	13.980	19.879	27.220	26.674	27.121
Erdgas-Heizwerke	9.306	14.094	14.518	16.625	17.048	14.464	9.103	8.488	8.064
Abfall	9.107	9.640	10.612	10.612	10.612	10.612	10.612	10.612	10.612
Biomasse-KWK	12.286	13.704	13.658	7.154	3.056	1.728	-	-	-
Biomasse-Heizwerke	17.488	18.902	24.111	36.848	45.132	40.084	36.016	30.925	26.553
Biogas	266	410	506	369	283	157	24	24	24
Geothermie	559	1.154	1.823	1.823	1.823	1.823	1.823	1.823	1.823
Total	84.121	81.763	87.844	95.393	97.962	94.871	91.027	84.884	80.642

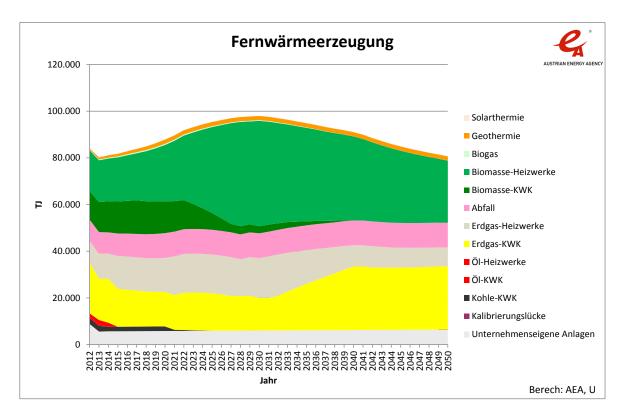


Abbildung 28: Fernwärmeaufbringung im Szenario "WEM"

Tabelle 19 und Abbildung 29 zeigen den Umwandlungseinsatz von Strom- und Fernwärmeerzeugungsanlagen (exkl. unternehmenseigene Anlagen) für das Szenario "WEM". Vor allem durch den Rückgang bei Kohle- und Erdgas-Kraftwerken bzw. KWK-Anlagen sinkt der Einsatz fossiler Energieträger bis 2030 um rund 55 PJ. Durch den Anstieg bei Erdgas nach 2030 kommt es bis 2050 jedoch wieder zu einem Anstieg auf nahezu den Verbrauch im Jahr 2012. Der Umwandlungseinsatz von biogenen Energieträgern erreicht um 2025 ein

Maximum (+19 PJ gegenüber 2012) und geht danach deutlich zurück. Der gesamte Brennstoffeinsatz sinkt von ca. 170 PJ (2012) auf rund 140 PJ (2050).

Tabelle 19: Umwandlungseinsatz im Szenario "WEM"

[1]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Kohle-Kraftwerke+KWK	38.121	22.006	17.180	-	-	-	-	-	-
Öl-Kraftwerke+KWK	1.479	-	-	-	-	-	-	-	-
Öl-Heizwerke	1.648	-	-	-	-	-	-	-	-
Erdgas-Kraftwerke+KWK	66.085	49.869	46.232	49.421	43.544	64.856	98.791	97.329	99.286
Erdgas-Heizwerke	10.948	16.581	17.080	19.559	20.056	17.016	10.709	9.986	9.487
Wasserkraft	152.492	135.941	146.862	149.578	149.578	149.578	149.578	149.578	149.578
Biomasse-KWK	25.177	28.111	28.016	14.673	6.267	3.544	-	-	-
Biomasse-Heizwerke	22.421	24.770	32.790	50.369	60.030	51.743	45.534	39.931	31.610
Biogas	5.002	6.978	8.625	6.259	4.769	2.578	286	286	286
Geothermie	562	1.159	1.829	1.829	1.829	1.829	1.829	1.829	1.829
Photovoltaik	1.206	5.335	17.366	30.021	40.392	51.348	61.627	64.111	64.156
Wind	8.894	16.501	22.559	23.534	26.531	31.491	38.177	43.922	48.084
Total	334.033	307.251	338.538	345.242	352.996	373.983	406.531	406.973	404.316

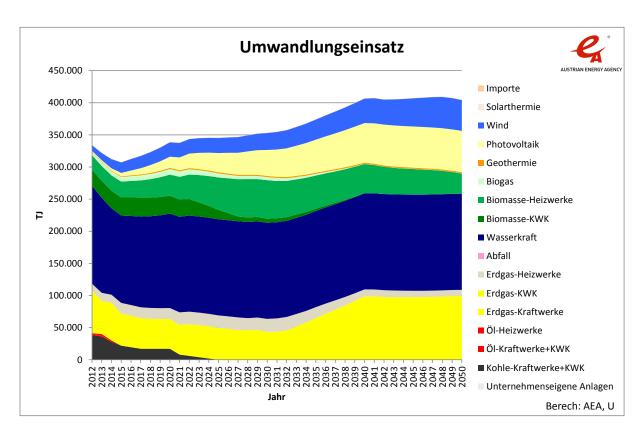


Abbildung 29: Umwandlungseinsatz im Szenario "WEM"

3.2 Szenario "WAM"

Aufbauend auf dem Szenario "WEM" wurde ein Szenario "WAM" entwickelt, in dem zusätzliche Maßnahmen im Bereich der Strom- und Fernwärmeaufbringung unterstellt sind.

3.2.1 CO₂-Zertifikatspreise

Für das Szenario "WAM" wurde dieselbe Preisentwicklung für CO₂-Emissionsrechte wie im Szenario "WEM" angenommen (Abbildung 25).

3.2.2 Energieträgerpreise

Für das Szenario "WAM" wurde dieselbe Entwicklung der Energieträgerpreise wie im Szenario "WEM" angenommen (Abbildung 26).

3.2.3 Maßnahmen im Bereich erneuerbarer Stromerzeugung

Im Szenario "WEM" wurde unterstellt, dass es zwar gemäß ÖSG-Zielsetzungen zu einem weiteren Zubau von Ökostromanlagen bis 2020 kommt, dass jedoch Biomasse- und Biogasanlagen spätestens nach 20 Jahren außer Betrieb gehen (25 % des Bestandes schon früher) und aufgrund eines Auslaufens des Fördersystems nicht revitalisiert werden. Im Szenario "WAM" wurde hingegen die Annahme getroffen, dass durch entsprechende Maßnahmen der gesamte Bestand an Biomasse- und Biogasanlagen erhalten bleibt (bzw. außer Betrieb gehende Anlagen durch solche mit gleicher Leistung ersetzt werden). Somit steigt die installierte Erzeugungskapazität auf Basis biogener Energieträger bis 2020 an (auf insgesamt rund 750 MW elektrische Leistung) und bleibt dann bis 2050 konstant.

Für Windenergie wurde unterstellt, dass für den Zeitraum nach 2020 ein weiteres Ausbauziel von insgesamt 2.000 MW elektrischer Leistung festgelegt wird, das durch einen jährlichen Zubau von 200 MW bis 2030 erreicht wird. Somit sind in "WAM" im Jahr 2030 infolge staatlicher Zielsetzungen rund 5.000 MW Windkraft in Betrieb. Zusätzlich ist im Modell ab 2020 freier Zubau möglich (diese Möglichkeit zur Kostenoptimierung wird tatsächlich, wenn auch in relativ geringem Umfang, genutzt).

Die übrigen Rahmenbedingungen bzw. Annahmen decken sich mit jenen des "WEM"-Szenarios.

3.2.4 Anlagen auf Basis fossiler Brennstoffe

Für das Szenario "WAM" wurden im Bereich der Verfügbarkeit von Kraftwerkskapazitäten grundsätzlich dieselben Annahmen hinterlegt wie im "WEM"-Szenario. Die zusätzlichen Maßnahmen im Bereich der erneuerbaren Stromerzeugung implizieren jedoch, dass es in "WAM" zu einem deutlich geringeren Einsatz fossiler Kraftwerkskapazitäten kommt (siehe Abschnitt 3.1.11).

3.2.5 Industrielle Erzeugung und Abfallverbrennung

Die vom Umweltbundesamt berechnete Erzeugung von Strom und Fernwärme aus unternehmenseigenen Anlagen (UEA) sowie aus Anlagen zur Abfallverbrennung (Tabelle 20) ändert sich nur geringfügig im Vergleich zum Szenario "WEM" (Tabelle 11).

Tabelle 20: Strom- und Fernwärmeaufbringung aus UEA im Szenario "WAM"

Unternehmenseigene Anlagen[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Strom	30.669	33.252	33.973	34.690	35.416	35.744	36.157	36.607	37.057
Fernwärme	8.815	5.679	6.011	6.270	6.530	6.634	6.747	6.862	6.977

3.2.6 Strom- und Fernwärmenachfrage

In diesem Szenario wurde die Nachfrage nach Strom teilweise ebenfalls durch die Ergebnisse (Tabelle 21) der Projektpartner Umweltbundesamt, TU Wien und TU Graz vorgegeben. Mit den Ergebnissen aus 2.2.2 bzw. Tabelle 7 ergab sich dann die Gesamtstromnachfrage (Tabelle 22). Die Nachfrage nach Fernwärme (Tabelle 23) wurde vollständig von den externen Partnern übernommen.

Tabelle 21: Stromnachfrage im Szenario "WAM": Teilergebnisse der Partner

Stromnachfrage [TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Haushalte									
Raumwärme, Warmwasser,	18.466	17.318	13.798	11.190	9.720	9.077	8.542	8.285	8.289
Klimatisierung, Hilfsenergie	10.400	17.316	13.750	11.190	3.720	3.077	8.542	8.283	0.203
Dienstleistungen									
Raumwärme, Warmwasser,	14.294	13.711	9.293	7.483	6.691	6.527	6.504	6.516	6.560
Klimatisierung, Hilfsenergie	14.234	15.711	5.255	7.403	0.031	0.527	0.504	0.510	0.500
Verkehr									
Schienenverkehr, Straßenverkehr,	10.580	11.179	12.419	15.802	20.665	25.322	29.857	33.849	37.410
sonstiger Landverkehr	10.360	11.1/9	12.419	15.802	20.003	25.322	25.057	33.043	37.410
Pipelines	518	622	673	682	703	765	810	830	859

Tabelle 22: Gesamtstromnachfrage im Szenario "WAM"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Verkehr	11.098	11.932	13.831	18.087	23.352	27.297	31.971	35.552	38.733
Haushalte	55.671	53.029	49.135	46.689	45.187	45.401	45.639	45.911	46.422
Dienstleistungen	53.009	50.182	44.694	42.713	42.785	44.844	47.779	50.580	53.605
Landwirtschaft	2.852	2.408	2.162	2.101	2.083	2.124	2.193	2.290	2.414
Industrie	101.361	98.265	104.338	118.751	136.188	149.463	163.840	179.611	196.683
Verbrauch des Sektors Energie	22.231	23.922	25.188	27.467	29.929	32.215	34.813	36.902	39.378
Transportverluste	12.132	11.812	12.274	13.395	14.610	15.727	16.996	18.016	19.225
Exporte	-	-	9.766	16.049	16.999	17.860	18.713	14.803	12.950
Total	258.354	251.549	261.389	285.251	311.133	334.932	361.944	383.666	409.411

Tabelle 23: Gesamtfernwärmenachfrage im Szenario "WAM"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Haushalte	29.754	30.106	31.272	34.663	34.517	34.235	33.198	31.188	29.842
Dienstleistungen	34.337	30.497	30.529	29.929	27.724	25.545	23.490	20.433	18.288
Industrie	11.611	11.796	12.686	13.790	15.003	15.164	15.263	15.650	16.072
Landwirtschaft	417	379	376	375	375	377	380	382	384
Transportverluste	8.003	8.125	9.163	9.486	8.988	8.796	8.627	8.507	8.343
Total	84.121	80.903	84.026	88.244	86.608	84.117	80.958	76.159	72.929

3.2.7 Ergebnisse für die Strom- und Fernwärmeaufbringung

Tabelle 24 und Abbildung 30 zeigen die Stromaufbringung für das Szenario "WAM". In diesem Szenario steigt die *inländische* Stromproduktion um durchschnittlich 1,1 % p. a. und ist im Jahr 2050 um rund 5 % höher als im Vergleichsszenario "WEM". Die generell höhere Stromerzeugung in Biomasse-, Biogas- und Windkraftanlagen hat (in Kombination mit einem reduzierten Strombedarf) gegenüber "WEM" deutlich geringere Stromimporte zur Folge: im Zeitraum 2020 bis 2050 sind sie um durchschnittlich 16 PJ pro Jahr niedriger als in "WEM". Auch

wird weniger Strom aus Erdgas erzeugt, wenn auch dieser Effekt wesentlich geringer und nicht über den gesamten Betrachtungszeitraum beobachtbar ist.

Im Übrigen sind in diesem Szenario ähnliche Entwicklungen erkennbar wie im "WEM"-Szenario: Der Einsatz von Erdgas geht bis ca. 2030 deutlich zurück und steigt danach wieder stark an. Windkraft und Solarstrom gewinnen massiv an Bedeutung. Ihr Anteil am Stromaufkommen beträgt 2030 25,5 % und 2050 fast 30 %.

Tabelle 24: Stromaufbringung (exkl. PSP) im Szenario "WAM"

[1]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Unternehmenseigene Anlagen	30.669	33.252	33.973	34.690	35.416	35.744	36.157	36.607	37.057
Kohle-Kraftwerke+KWK	15.120	8.631	6.652	-	-	-	-	-	-
Öl-Kraftwerke+KWK	326	-	-	-	-	-	-	-	-
Erdgas-Kraftwerke+KWK	26.450	19.848	18.211	18.211	17.149	28.195	45.096	47.619	48.205
Abfall	3.443	3.645	4.012	4.012	4.012	4.012	4.012	4.012	4.012
Wasserkraft	152.492	135.941	146.862	149.578	149.578	149.578	149.578	149.578	149.578
Biomasse-KWK	5.035	5.667	6.377	6.377	6.377	6.377	6.377	6.377	6.377
Biogas	2.101	2.927	3.889	3.889	3.889	3.889	3.889	3.889	3.889
Geothermie	2	5	5	5	5	5	5	5	5
Photovoltaik	1.206	5.335	17.366	30.021	40.392	51.348	61.627	64.111	64.156
Wind	8.894	16.501	22.559	30.134	38.935	42.253	47.212	52.025	56.417
Importe	12.615	19.798	1.483	8.333	15.378	13.531	7.990	19.442	39.715
Total	258.354	251.549	261.389	285.251	311.133	334.932	361.944	383.666	409.411

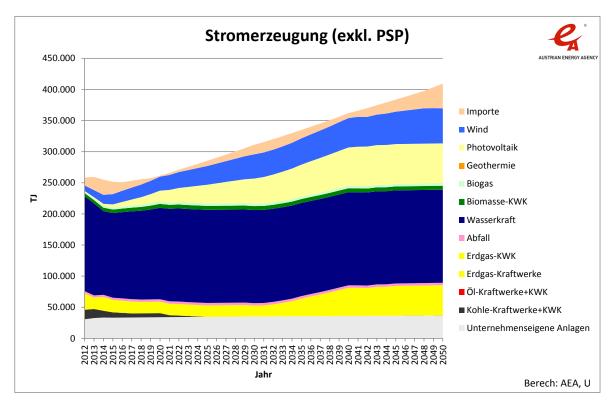


Abbildung 30: Stromaufbringung (exkl. PSP) im Szenario "WAM"

In Tabelle 25 und Abbildung 31 ist die Fernwärmeaufbringung des Szenarios "WAM" dargestellt. Im Unterschied zum "WEM"-Szenario kommt es hier bereits ab ca. 2025 zu einem Rückgang der Fernwärme-erzeugung. Aufgrund der Bestandserhaltung bei Biomasse- und Biogas-Anlagen werden Biomasse-Heizwerke bei Weitem nicht so stark ausgebaut wie im Vergleichsszenario. Auch wird im Zeitraum 2015 bis 2030 deutlich weniger Fernwärme in Erdgas-Heizwerken erzeugt.

Tabelle 25: Fernwärmeaufbringung im Szenario "WAM"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Unternehmenseigene Anlagen	8.815	5.679	6.011	6.270	6.530	6.634	6.747	6.862	6.977
Kohle-KWK	2.545	1.960	1.960	-	-	-	-	-	-
Öl-KWK	786	-	-	-	-	-	-	-	-
Öl-Heizwerke	1.236	1.658	-	-	-	-	-	-	-
Erdgas-KWK	21.728	16.594	14.817	14.817	13.980	20.316	26.823	26.183	26.420
Erdgas-Heizwerke	9.306	11.202	10.528	12.311	17.242	13.457	8.096	7.616	7.293
Abfall	9.107	9.640	10.612	10.612	10.612	10.612	10.612	10.612	10.612
Biomasse-KWK	12.286	13.704	15.432	15.432	15.432	15.432	15.432	15.432	15.432
Biomasse-Heizwerke	17.488	18.902	22.300	26.436	20.445	15.300	10.882	7.088	3.830
Biogas	266	410	543	543	543	543	543	543	543
Geothermie	559	1.154	1.823	1.823	1.823	1.823	1.823	1.823	1.823
Total	84.121	80.903	84.026	88.244	86.608	84.117	80.958	76.159	72.929

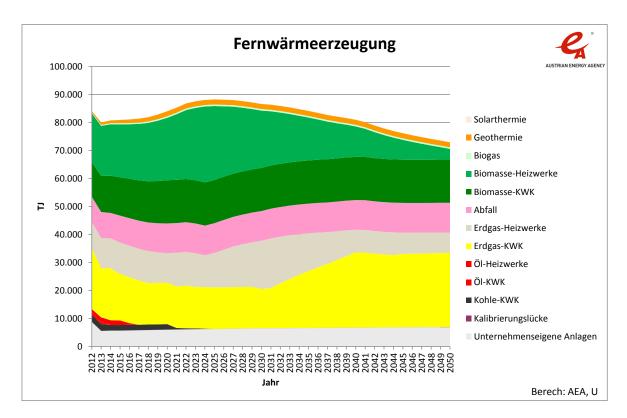


Abbildung 31: Fernwärmeaufbringung im Szenario "WAM"

Tabelle 26 und Abbildung 32 zeigen den Umwandlungseinsatz von Strom- und Fernwärmeerzeugungsanlagen (exkl. unternehmenseigene Anlagen) für das Szenario "WAM". Im Vergleich zum "WEM"-Szenario zeigt sich eine deutliche Verschiebung des Biomasseeinsatzes von Heizwerken zu KWK-Anlagen. Der Umwandlungseinsatz an fester Biomasse ist im "WAM"-Szenario geringfügig höher als im Vergleichsszenario. Wird darüber hinaus der zusätzliche Einsatz von Biogas berücksichtigt, so beläuft sich die Differenz im Zeitraum 2020 bis 2050 auf durchschnittlich rund 6,4 PJ p.a. Andererseits wird im "WAM"-Szenario weniger Erdgas eingesetzt. Die Differenz im Zeitraum 2020 bis 2050 beläuft sich auf durchschnittlich rund 2,8 PJ p.a.

Über den gesamten Betrachtungszeitraum steigt im "WAM"-Szenario der Brennstoffeinsatz gegenüber "WEM" um rund 100 PJ. Der Hauptgrund dafür sind – neben geringeren Wirkungsgraden von Biomasse- und Biogasanlagen im Vergleich zu Erdgas-basierten Anlagen – die deutlich geringeren Stromimporte.

Tabelle 26: Umwandlungseinsatz im Szenario "WAM"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Kohle-Kraftwerke+KWK	38.121	22.006	17.180	-	-	-	-	-	-
Öl-Kraftwerke+KWK	1.479	-	-	-	-	-	-	-	-
Öl-Heizwerke	1.648	2.210	-	-	-	-	-	-	-
Erdgas-Kraftwerke+KWK	66.084	51.102	46.130	46.130	43.544	66.799	96.737	95.280	96.285
Erdgas-Heizwerke	10.948	13.179	12.386	14.483	20.285	15.832	9.525	8.960	8.580
Wasserkraft	152.492	135.941	146.862	149.578	149.578	149.578	149.578	149.578	149.578
Biomasse-KWK	25.177	28.111	31.655	31.655	31.655	31.655	31.655	31.655	31.655
Biomasse-Heizwerke	22.421	24.770	30.119	36.946	28.995	22.238	15.545	9.951	4.559
Biogas	5.002	6.978	9.271	9.271	9.271	9.271	9.271	9.271	9.271
Geothermie	562	1.159	1.829	1.829	1.829	1.829	1.829	1.829	1.829
Photovoltaik	1.206	5.335	17.366	30.021	40.392	51.348	61.627	64.111	64.156
Wind	8.894	16.501	22.559	30.134	38.935	42.253	47.212	52.025	56.417
Total	334.032	307.293	335.355	350.045	364.483	390.802	422.977	422.658	422.330

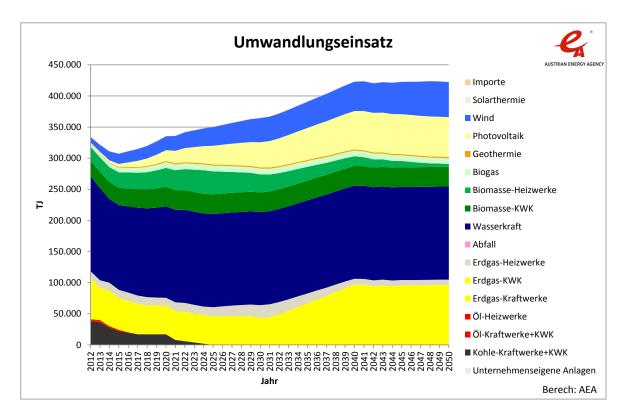


Abbildung 32: Umwandlungseinsatz im Szenario "WAM"

3.3 Szenario "WAM+"

Das Szenario "WAM+" baut auf dem Szenario "WAM" auf und deckt hinsichtlich der wirksamen Annahmen den Zeitbereich bis 2050 ab.

3.3.1 CO₂-Zertifikatspreise

Für das Szenario "WAM+" wurde bis zum Jahr 2035 dieselbe Preisentwicklung für CO₂-Emissionsrechte wie in den Szenario "WEM" und "WAM" angenommen (Abbildung 33). Ab dem Jahr 2036 kommt es zu einer deutlichen Steigerung bis auf 162 € je emittierter Tonne CO₂.

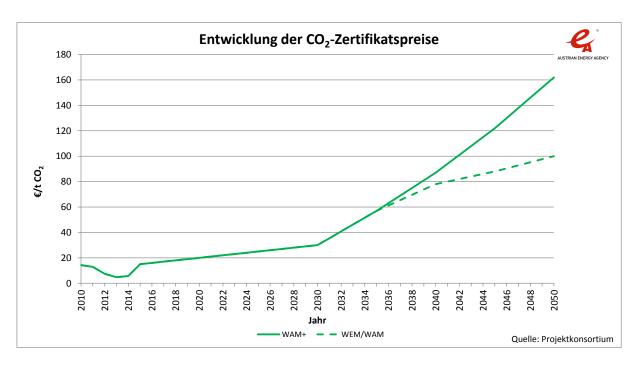


Abbildung 33: Entwicklung der CO_2 -Zertifikatspreise im Szenario "WAM+" im Vergleich zu den Szenarien "WEM" und "WAM"

3.3.2 Energieträgerpreise

Für das Szenario "WAM+" wurde dieselbe Entwicklung der Energieträgerpreise wie im Szenario "WEM" angenommen (Abbildung 26).

3.3.3 Maßnahmen im Bereich erneuerbarer Stromerzeugung

Im Szenario "WAM+" wurde für Windenergie unterstellt, dass für den Zeitraum nach 2030 ein weiteres Ausbauziel von insgesamt 3.500 MW elektrischer Leistung festgelegt wird, das durch einen jährlichen Zubau von 175 MW bis 2050 erreicht wird. Somit sind in "WAM+" im Jahr 2050 infolge staatlicher Zielsetzungen rund 8.700 MW an Windkraft in Betrieb. Zusätzlich ist im Modell ab 2020 freier Zubau möglich (diese Möglichkeit zur Kostenoptimierung wird tatsächlich, wenn auch in relativ geringem Umfang, genutzt). Der Ausbau der Photovoltaik wird von 2031 bis 2050 ebenfalls um 2.000 MW gesteigert und erreicht im Jahr 2050 20 GW.

Weiter wurde angenommen, dass die Erzeugung von Fernwärme aus Geothermie von 2030 bis 2050 verdoppelt werden kann, und durch die Installation von 2 Großwärmepumpen von je 200 MW Leistung in den Jahren 2036 und 2041 weitere Fernwärme aus fossilen Quellen ersetzt werden kann.

Die übrigen Rahmenbedingungen bzw. Annahmen decken sich mit jenen des "WAM"-Szenarios.

3.3.4 Anlagen auf Basis fossiler Brennstoffe

Aufgrund des Ausbaus der Großwärmepumpen wurde die Verfügbarkeit der Erdgas-KWK schrittweise reduziert.

Die übrigen Rahmenbedingungen bzw. Annahmen decken sich mit jenen des "WAM"-Szenarios.

3.3.5 Industrielle Erzeugung und Abfallverbrennung

Die Erzeugung von Strom und Fernwärme aus unternehmenseigenen Anlagen (UEA) sowie aus Anlagen zur Abfallverbrennung (Tabelle 20) wurde vom Umweltbundesamt berechnet.

Tabelle 27: Strom- und Fernwärmeaufbringung aus UEA im Szenario "WAM+"

Unternehmenseigene Anlagen[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Strom	30.669	33.572	32.694	30.591	29.399	25.152	22.654	20.993	20.275
Fernwärme	8.815	6.190	6.522	6.522	6.631	6.881	5.986	5.728	6.149

3.3.6 Strom- und Fernwärmenachfrage

In diesem Szenario wurde die Nachfrage von Strom teilweise ebenfalls durch die Ergebnisse (Tabelle 28) der Projektpartner Umweltbundesamt, TU Wien und TU Graz vorgegeben. Mit den Ergebnissen aus 2.3.2 bzw. Tabelle 10 ergab sich dann die Gesamtstromnachfrage (Tabelle 29). Die Nachfrage nach Fernwärme (Tabelle 30, Tabelle 23) wurde vollständig von den externen Partnern übernommen.

Tabelle 28: Stromnachfrage im Szenario "WAM+": Teilergebnisse der Partner

Stromnachfrage [TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Haushalte									
Raumwärme, Warmwasser,	18.451	17.493	14.685	11.999	10.601	9.827	9.294	0.101	0.402
Klimatisierung, Hilfsenergie	18.451	17.493	14.085	11.999	10.601	9.827	9.294	9.181	9.482
Dienstleistungen									
Raumwärme, Warmwasser,	14.277	13.729	9.744	7.973	7.150	6.854	6.640	6.623	6.720
Klimatisierung, Hilfsenergie	14.277	15.729	9.744	7.975	7.150	0.654	6.640	0.023	0.720
Verkehr									
Schienenverkehr, Straßenverkehr,	10.580	11.203	12.985	17.552	23.038	26.592	28.981	29.687	29.255
sonstiger Landverkehr	10.580	11.203	12.985	17.552	23.038	20.592	28.981	29.087	29.255
Pipelines	518	622	1.325	1.618	2.096	2.350	2.549	2.663	2.528

Tabelle 29: Gesamtstromnachfrage im Szenario "WAM+"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Verkehr	11.098	11.826	14.310	19.170	25.133	28.942	31.530	32.350	31.783
Haushalte	55.671	53.029	49.135	47.229	44.765	42.646	40.615	39.066	37.373
Dienstleistungen	53.009	50.182	44.694	43.052	41.958	41.280	39.372	37.778	36.341
Landwirtschaft	2.852	2.408	2.162	2.109	2.057	2.006	1.956	1.908	1.861
Industrie	101.359	99.757	102.346	102.912	100.490	101.629	102.975	103.852	103.848
Verbrauch des Sektors Energie	22.231	24.075	25.009	26.431	27.772	29.076	31.342	33.157	33.381
Transportverluste	12.132	11.888	12.187	12.889	13.557	14.195	14.667	14.918	15.028
Exporte	-	-	9.694	20.700	32.976	42.518	49.888	54.672	60.412
Total	258.352	253.165	259.538	274.492	288.708	302.291	312.345	317.701	320.027

Tabelle 30: Gesamtfernwärmenachfrage im Szenario "WAM+"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Haushalte	29.754	30.106	31.272	36.283	36.922	35.175	32.911	30.536	29.346
Dienstleistungen	34.337	30.497	30.529	29.426	25.969	21.497	17.835	14.501	12.373
Industrie	11.611	11.753	12.562	12.957	13.243	12.563	11.943	11.311	10.609
Landwirtschaft	417	378	366	350	334	329	324	319	314
Transportverluste	8.003	8.077	8.900	9.674	10.170	10.065	10.109	10.496	10.098
Total	84.121	80.810	83.629	88.691	86.639	79.630	73.122	67.163	62.740

3.3.7 Ergebnisse für die Strom- und Fernwärmeaufbringung

Tabelle 31 und Abbildung 34 zeigen die Stromaufbringung für das Szenario "WAM+". In diesem Szenario steigt die *inländische* Stromproduktion um durchschnittlich 0,7 % p. a. und ist damit im Jahr 2050 um rund 13 % bzw. 50 PJ niedriger als im Szenario "WAM". Aufgrund der gegenüber "WAM" stark gesunkenen Stromnachfrage sowie der nochmals gesteigerten Stromerzeugung aus Wind (+9,5 PJ) und Photovoltaik (+7 PJ) kommt es im

Jahr 2050 trotz der Rückgänge der Erzeugung aus Erdgas-KWK (-48 PJ), aus UEA (-17 PJ) und aus der Abfallverbrennung (-1 PJ) zu einem völligen Wegfall der Stromimporte.

Der Anteil von Wind und Photovoltaik an der gesamten Stromaufbringung beträgt im Jahr 2050 nahezu 43 % und liegt nur mehr knapp hinter dem der Wasserkraft (47 %).

Tabelle 31: Stromaufbringung (exkl. PSP) im Szenario "WAM+"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Unternehmenseigene Anlagen	30.669	33.572	32.694	30.591	29.399	25.152	22.654	20.993	20.275
Kohle-Kraftwerke+KWK	15.120	8.631	6.652	-	-	-	-	-	-
Öl-Kraftwerke+KWK	326	-	-	-	-	-	-	-	-
Erdgas-Kraftwerke+KWK	26.450	19.660	18.211	18.211	17.149	17.149	10.947	-	-
Abfall	3.443	3.645	4.012	4.012	4.012	3.812	3.611	3.410	3.009
Wasserkraft	152.492	135.941	146.862	149.578	149.578	149.578	149.578	149.578	149.578
Biomasse-KWK	5.035	5.667	6.377	6.377	6.377	6.377	6.377	6.377	6.152
Biogas	2.101	2.927	3.889	3.889	3.889	3.889	3.889	3.889	3.806
Geothermie	2	5	5	5	5	5	5	5	5
Photovoltaik	1.206	5.335	17.366	30.021	40.392	51.808	63.435	70.909	71.281
Wind	9.098	16.728	22.786	30.346	37.906	44.521	51.849	59.306	65.921
Importe	12.409	21.055	683	1.460	-	-	-	3.233	-
Total	258.352	253.165	259.538	274.492	288.708	302.291	312.345	317.701	320.027

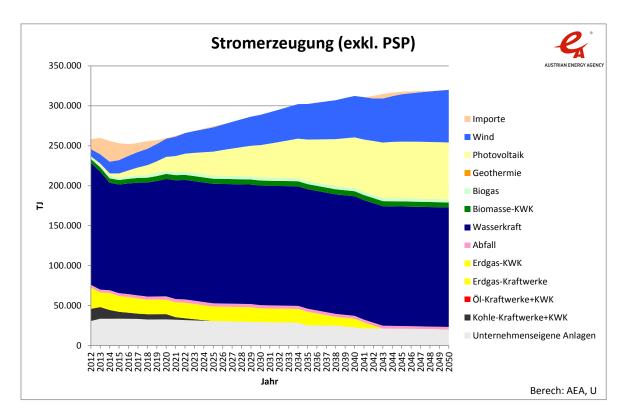


Abbildung 34: Stromaufbringung (exkl. PSP) im Szenario "WAM+"

In Tabelle 32 und Abbildung 35 ist die Fernwärmeaufbringung des Szenarios "WAM+" dargestellt. Wie im "WAM"-Szenario kommt es hier ab ca. 2025 zu einem Rückgang der Fernwärmeerzeugung; die Gesamterzeugung im Jahr 2050 liegt um 10 PJ unter der im Szenario "WAM". Die Erzeugung von Fernwärme aus Erdgas-KWK und Erdgas-Heizwerken wird durch die in den Jahren 2036 und 2041 installierten Großwärmepumpen und (in geringerem Maße) durch Geothermieanlagen ersetzt.

Tabelle 32: Fernwärmeaufbringung im Szenario "WAM+"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Unternehmenseigene Anlagen	8.815	6.190	6.522	6.522	6.631	6.881	5.986	5.728	6.149
Kohle-KWK	2.545	1.960	1.960	-	-	-		-	-
ÖI-KWK	786	-	-	-	-	-		-	-
Öl-Heizwerke	1.236	1.658	-	-	-	-		-	-
Erdgas-KWK	21.728	16.470	14.817	14.817	13.980	13.980	8.144	-	-
Erdgas-Heizwerke	9.306	10.722	9.620	10.545	8.664	5.972	3.656	1.679	-
Abfall	9.107	9.640	10.612	10.612	10.612	10.081	9.550	9.020	7.959
Biomasse-KWK	12.286	13.704	15.432	15.432	15.432	15.432	15.432	15.432	14.882
Biomasse-Heizwerke	17.488	18.902	22.300	28.396	28.953	24.466	23.535	23.882	22.041
Biogas	266	410	543	543	543	543	543	543	532
Geothermie & Umgebungswärme	559	1.154	1.823	1.823	1.823	2.273	6.275	10.879	11.177
Total	84.121	80.810	83.629	88.691	86.639	79.630	73.122	67.163	62.740

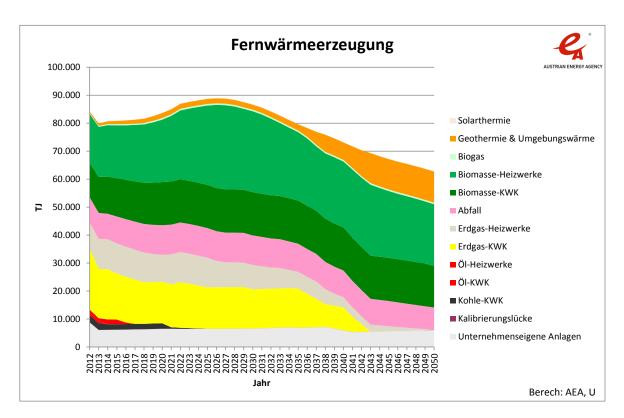


Abbildung 35: Fernwärmeaufbringung im Szenario "WAM+"

Tabelle 33 und Abbildung 36 zeigen den Umwandlungseinsatz von Strom- und Fernwärmeerzeugungsanlagen (exkl. UEA) für das Szenario "WAM+". Im Vergleich zum Szenario "WAM" zeigen sich ein deutlicher Anstieg des Biomasseeinsatzes in Heizwerken sowie eine starke Zunahme von Geothermie & Umgebungswärme¹⁴. Ebenfalls angestiegen ist – bedingt durch den Anlagenausbau – der Umwandlungseinsatz von Wind und Photovoltaik. Im Gegenzug dazu kommt es zu einem völligen Verschwinden des Erdgaseinsatzes.

Gesamt betrachtet sinkt bis zum Jahr 2050 im "WAM+"-Szenario der Brennstoffeinsatz gegenüber "WAM" um rund 55 PJ und liegt damit nur um 33 PJ höher als im Jahr 2012.

Tabelle 33: Umwandlungseinsatz im Szenario "WAM+"

[TJ]	2012	2015	2020	2025	2030	2035	2040	2045	2050
Kohle-Kraftwerke+KWK	38.121	22.006	17.180	-	-	-	-	-	-
Öl-Kraftwerke+KWK	1.479	-	-	-	-	-	-	-	-
Öl-Heizwerke	1.648	2.210	-	-	-	-	-	-	-
Erdgas-Kraftwerke+KWK	66.085	50.650	46.130	46.130	43.544	43.544	26.270	-	-
Erdgas-Heizwerke	10.948	12.614	11.317	12.406	10.193	7.026	4.301	1.975	-
Wasserkraft	152.492	135.941	146.862	149.578	149.578	149.578	149.578	149.578	149.578
Biomasse-KWK	25.177	28.111	31.655	31.655	31.655	31.655	31.655	31.655	30.527
Biomasse-Heizwerke	22.421	24.770	30.119	39.836	40.715	33.150	31.479	31.990	30.102
Biogas	5.002	6.978	9.271	9.271	9.271	9.271	9.271	9.271	9.072
Geothermie	562	1.159	1.829	1.829	1.829	2.279	6.280	10.884	11.183
Photovoltaik	1.206	5.335	17.366	30.021	40.392	51.808	63.435	70.909	71.281
Wind	9.098	16.728	22.786	30.346	37.906	44.521	51.849	59.306	65.921
Total	334.238	306.504	334.514	351.070	365.082	372.831	374.118	365.568	367.663

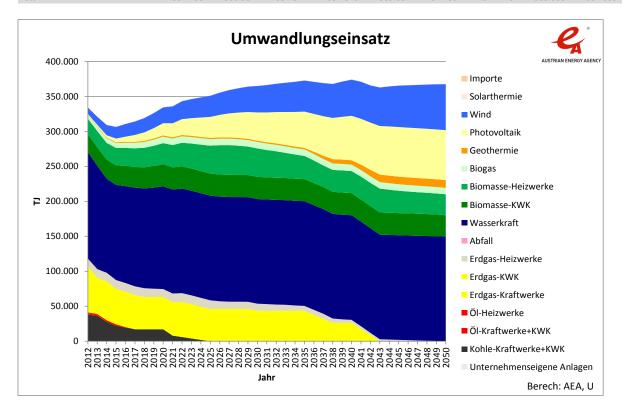


Abbildung 36: Umwandlungseinsatz im Szenario "WAM+"

¹⁴ Die Umgebungswärme enthält den Umwandlungseinsatz der Großwärmepumpen.

4 Anhang: Storylines zum Szenario WAM+

Als weitere Unterstützung für den Diskussionsprozess zum klima- und energiepolitischen Rahmen 2030/2050 wurde ein Szenario entwickelt, das eine Erreichung der möglichen, noch zu definierenden österreichischen Ziele im Rahmen des EU-Ziels einer 40%igen Treibhausgasreduktion bis 2030 abbildet und außerdem den Zeitbereich bis 2050 abdeckt, womit es zeitlich deutlich über die bisher entwickelten Szenarien hinausgeht.

Dieses Szenario "WAM+" beinhaltet Maßnahmen, die nach 2020 wirksam werden (mit Blick auf den Zielpfad 2050¹⁵), und die notwendige Transformation der Stromerzeugung und gleichzeitig eine Begrenzung bzw. Reduktion des Energieverbrauchs bewirken. Die Basis für dieses Szenario wurde in einem vom Umweltbundesamt organisierten Workshop mit verschiedenen Fachinstitutionen am 21. Oktober 2014 gelegt. Darauf aufbauend wurde eine allgemeine sowie verschiedene sektorspezifische Storylines entwickelt, die die Entwicklung bis 2050 qualitativ beschreiben.

In den folgenden Abschnitten werden diese Storylines wiedergegeben:

Abschnitt 4.1: Allgemeine Rahmenbedingungen

Abschnitt 4.2: Industrie

Abschnitt 4.3: Energie

4.1 Allgemeine Rahmenbedingungen

Um bis zum Jahr 2050 einen signifikanten Rückgang im Energieverbrauch zu erreichen, ist ein österreichisches Gesamtkonzept zur Veränderung der Gesellschaftsstruktur mit Bekenntnis zur politischen Verantwortung notwendig. Die vollständige Transformation des Energieversorgungssystems in wenigen Jahrzehnten resultiert aus der Akzeptanz und der aktiven Teilnahme der Bevölkerung sowohl als Investor, z. B. bei der Gebäudedämmung, als auch als Verbraucher, Betreiber und als politischer Souverän. Der Umbau zu einer nachhaltigen Energieversorgung inklusive dafür erforderlicher Infrastrukturmaßnahmen gelingt, da die Energiepolitik für die Bürgerinnen und Bürger verständlich und nachvollziehbar ist. Für diese gesamtgesellschaftliche Aufgabe sind Wirtschaft und Politik gleichermaßen gefordert. Dazu gehört ganz wesentlich, dass die langfristigen Ziele wie auch die Maßnahmen zu ihrer Umsetzung nachvollziehbar begründet werden. Erreicht werden Änderungen in Lebensstil und Konsummustern u.a. durch Bereitstellung und Unterstützung von Sharing-Angeboten ("sharing-economy").

Eine erfolgreiche Energiepolitik braucht einen breiten Konsens mit allen interessierten gesellschaftlichen Gruppen. Die relevanten Grundlagen für staatliche Entscheidungen werden in einer verständlichen Form der Öffentlichkeit zugänglich gemacht. Sowohl Energie- als auch Transformationskonzept werden durch intensive und kontinuierliche Öffentlichkeitsarbeit für alle relevanten Zielgruppen ausführlich kommuniziert und erläutert.

¹⁵ Das bedeutet, dass die Ergebnisse hinsichtlich Energieverbrauch und Treibhausgasemissionen nicht vorgegeben waren, sondern die Maßnahmen mit Blick auf diese Ziele gewählt bzw. gestaltet wurden.

Soziale und gesellschaftspolitische Hemmnisse beim Transformationsprozess werden eruiert und überwunden. Insbesondere werden folgende Kommunikationsziele verfolgt (Quelle: Fachausschuss "Nachhaltiges Energiesystem 2050" des ForschungsVerbunds Erneuerbare Energien Energiekonzept 2050):

- Verständnis für die unbedingte Notwendigkeit der Nachhaltigkeitskriterien für eine künftige Energieversorgung (ökologisch, ökonomisch und sozial).
- Information über die technisch-wissenschaftlichen Innovationen, die neue Energieeffizienz- und Umwandlungstechniken ermöglichen und bekannte Techniken verbessern.
- Aufklärungsmaßnahmen zur Überzeugung von Gebäudeeigentümern, Energieeinsparmaßnahmen umzusetzen und sich an Nahwärmenetze anzuschließen.
- Information über die wirtschaftlichen Potenziale der Energieeffizienz und der Erneuerbaren: Kostensenkung, Arbeitsplatzschaffung, Export.

Das Umweltbewusstsein der Bevölkerung wird gestärkt (z.B. Energiesparunterricht, Vermeidung von überflüssigen Energiedienstleistungen), das Bildungs- und Stipendienangebot ausgebaut und die Forschungsförderung verstärkt. Ökologisches Bewusstsein wird leistbar. Auch politisch beteiligt sich die Bevölkerung durch direkte oder partizipatorische Demokratie an den Entscheidungsprozessen.

Eine erfolgreiche Transformation der Energieversorgung erfordert Fachkräfte, die diese technisch umsetzen. Die Aus- und Weiterbildung der Fachkräfte für ein erneuerbares Energieversorgungssystem wird zielgerichtet für alle Einsatzbereiche ausgebaut: Spitzenforschung, Produktentwicklung, Planung, Vertrieb, Installation und Energieberatung sowie Behörden, die entsprechende Planungsaufgaben haben.

Die Integration der Zuwanderer in Bildung und Arbeitsmarkt gelingt. Der Zugang zu Arbeit wird durch z.B. Crowdworking erleichtert, erfolgt aber unter gewerkschaftlicher Mitbestimmung zur Sicherung von Arbeitsrechten. Neue Informations- und Kommunikationstechnologien und geänderte Anforderungen von Menschen an ihren Arbeitsplatz führen zum Entstehen einer neuen Welt des Arbeitens. Arbeiten, Lernen und Leben werden stärker miteinander verwoben. Zeitlich und räumlich flexiblere, moderne Arbeitsweisen bauen auf virtuelle Kooperation und geteilte Infrastrukturen. Unternehmen passen die Büroraumgestaltung an und bieten die technischen Möglichkeiten für dezentrale Zusammenarbeit.

Für die Trias der Zielvorstellung "Wettbewerbsfähige Volkswirtschaft, hohes Wohlstandsniveau und geringe Emissionen" ist wichtig, dass die Transformation zur neuen Gesellschaftsstruktur ohne (größere) soziale Zerwürfnisse stattfindet (z.B. durch höhere Verteilungsgerechtigkeit), ökologische Entscheidungen getroffen werden (z.B. Internalisierung externer Kosten) und neue Standards in der (technologischen) Bildung gesetzt werden. Forschungstätigkeiten sind zentral für Unternehmen, daraus ergeben sich Arbeitsplätze und daraus erwächst Wohlstand. Durch höhere Bildung und Qualifikation werden auch Erfindung/Entdeckung und Anwendung von neuen Technologien ermöglicht, die zu geringeren Emissionen führen. Die Anwendung der vorhandenen technischen und administrativen Möglichkeiten zum Umweltschutz wird unterstützt und genießt entsprechendes Ansehen (ökologische Beschaffung).

Darüber hinaus wird Kapital für nachhaltige Projekte (z.B. über Crowdinvesting) benötigt. Dazu wird Risikokapital bereitgestellt und es werden Regelungen zur Finanzierung von Projekten mit höherer Ausfallswahrscheinlichkeit bzw. längerer Dauer getroffen.

Hinsichtlich Wohlstands werden andere Indikatoren als das BIP besser von Politik und Wirtschaft wahrgenommen. Informationswachstum und ökologische Transparenz unterstützen die Schärfung eines solchen Bewusstseins und die Entwicklung einer smarten Regulierung.

4.2 Industrie

Bis zum Jahr 2050 entwickelt sich die Gesellschaft zu einer "low-waste society". Durch europaweit verstärktes Umweltbewusstsein, gepaart mit entsprechenden finanziellen Anreizen und gesetzlichen Regelungen (Ökodesign-Richtlinie mit ambitionierten Recycling-Kriterien), stehen europaweit deutlich mehr Altstoffe zur Verfügung (dadurch kann z.B. mehr Elektrostahl statt Hochofenstahl erzeugt werden). Das Recycling der Produkte wird durch intelligentes Design und Pfandsysteme begünstigt. Kreislaufwirtschaft und die kaskadische Nutzung von Ressourcen hat sich in der Industrie und darüber hinaus etabliert. Zum Teil werden Produkte vom Hersteller vermietet ("leasing") und können so nach der Nutzung weiter im Produktionsprozess gehalten werden.

Die Produkte sind durch das verbesserte Recycling mit weniger Emissionen belastet. Bei den Produkten wird der gesamte Produktlebenszyklus in die Bewertung einbezogen. Verpackung wird auf ein notwendiges Maß reduziert.

Die Produkte wandeln sich von kurzlebigen, billigen Erzeugnissen zurück zu langlebigen, hochqualitativen Wertgütern, die auch von mehreren Personen/Parteien bis zum Ende der Lebensdauer genutzt werden ("sharing"). Die gesetzlichen Garantiezeiten werden erhöht. Defekte Geräte werden nicht weggeworfen, sondern in der Regel repariert bzw. Komponenten wiederverwendet ("re-use"). Die Anzahl der in Österreich erzeugten Produkte geht leicht zurück, durch die höheren Preise pro Produkt (aufgrund der hohen Qualität) sinkt der Produktionswert aber kaum bzw. in wesentlich geringerem Ausmaß (z.B. durch eine Verschiebung der Grundstoffindustrie zur Endfertigung).

Durch die langlebigeren Produkte sinkt auch das Aufkommen im Güterverkehr (=>Verkehr) Im Umkehrschluss geht die Produktion von Automobilen durch die Reduktion des motorisierten Individualverkehrs zugunsten von ÖV und Sharing-Konzepten zurück. Speziell für die Eisen- und Stahlindustrie wird angenommen, dass Hot Briquetted Iron (Eisenschwamm) importiert wird.

Als Konsequenz der rückläufigen Abfallzahlen werden nicht alle Abfallverbrennungsanlagen am Ende der Lebenszeit ersetzt, sodass die Kapazität in Österreich geringer wird. (=>Abfallverbrennung)

Aufgrund sehr guter Ausbildung des Personals und neuen Betriebskonzepten ("job sharing") ist die Produktion in Europa weiterhin wettbewerbsfähig.

Durch zukünftige innovative Technologien¹⁶ (siehe Forschung- und Entwicklungsfahrpläne industrieller Branchen wie Eisen- und Stahl, Chemie, Zement, Zellstoff und Mineralische Industrie des Energieinstituts an der JKU) und Verbesserung der bestehenden Techniken (z.B. Digitale Fabrik) werden pro Wertschöpfungseinheit weniger Energie und Rohstoffe benötigt. Flexible und adaptive Produktionstechnologien und -prozesse erlauben es, alternative und sekundäre Rohstoffe sowie erneuerbare Energien optimal einzusetzen. Österreich ist Innovationsführer im Bereich industrieller Rohstoff- und Energieeffizienz. Diese Aspekte werden schon beim Bau der Anlagen oder Anlagenteile einbezogen.

Es steht genügend Risikokapital zur Verfügung, um langfristig wirksame Effizienzmaßnahmen zu setzen (ROI 10 Jahre und mehr). Alternativ werden diese von privaten Geldgeberkonsortien finanziert ("crowd funding"). Dies bedingt eine Änderung der Gesellschaftsstruktur, der Börsentätigkeit (Spekulationsobjekte) oder des Kapitalmarkts. Das BIP ist nicht mehr das zentrale Bewertungskriterium für Wohlstand.

¹⁶ Zu erwarten auf Basis von "Waves of innovation" in z.B. N. Stern "The Logic, urgency, an d promise in tackling climate change"

Die Produktion greift vermehrt auf den Energieträger Elektrizität zu, da kohlenstoffbasierte Energieträger signifikant teurer werden (über den CO₂-Preis und steigende Förderkosten). "Fossilfrei erzeugt" wird ein Gütezeichen.

Torrefizierung oder Holzvergasung (um überzählige Biomasse in Industriebetrieben für Hochtemperaturprozesse einzusetzen) bleiben auf niedrigem Niveau. Biomasse wird vermehrt stofflich verwertet (Bau, Dämmung), schlecht verbrennbare Biomasse wird zur Herstellung von synthetischen Gasen und Kraftstoffen verwendet.

Produktionsunternehmen bieten in der Breite produktbegleitende Dienstleistungen an, welche die Energieeffizienz auch bei dem Kunden/der Kundin und dem Endverbraucher/der Endverbraucherin deutlich steigern. Die Betrachtung des gesamten Lebenszyklus ist Standard. Es existiert ein ausgeprägter Markt für "Contracting" und Energiedienstleistungen.

Eckpunkte

- Langlebige, hochqualitative Produkte (weniger Abfälle)
- Hocheffiziente Nutzung der eingesetzten Energien und Ressourcen (verbessertes Recycling)
- Entwicklung radikal neuer Technologien
- Stärkere Verschränkung von Forschung-, Umwelt- und Wirtschaftsförderung sowie Bewusstseinsbildung in der Öffentlichkeit.

4.3 Energie

Die energiepolitischen Ziele der EU und die Energie- und Klimaschutzziele bis 2020 und 2030 lassen sich nicht erreichen ohne ein vollständiges europäisches Stromverbundnetz mit mehr grenzüberschreitenden Verbindungsleitungen, mit Speichermöglichkeiten und intelligenten Netzen, damit in einem System mit einem hohen Anteil an fluktuierend eingespeisten erneuerbaren Energien die Nachfrage gesteuert und die sichere Energieversorgung gewährleistet werden kann. (Europäische Kommission (COM(2015) 82)

Die Energiepolitik Europas wird neu ausgerichtet und in Richtung einer Energieunion gelenkt. Das übergeordnete Ziel der Union, die Gewährleistung einer erschwinglichen, sicheren und nachhaltigen Energieversorgung sowie von Wachstum und Beschäftigung in der gesamten EU, wird durch ein Verbundnetz unterstützt. Verbindungsleitungen werden gebaut und ein in vollem Umfang funktionierender und verbundener EU-Energiebinnenmarkt erreicht. Darüber hinaus erleichtern Verbindungsleitungen die Soforthilfe zwischen Übertragungsnetzbetreibern, da sie eine größere Zusammenarbeit und Solidarität zwischen ihnen ermöglichen. Diese Stromverbindungsleitungen stärken die Versorgungssicherheit Europas, da das Netz dadurch in der Lage ist, immer größere fluktuierende Mengen an Strom aus erneuerbaren Energien auf sicherere und kosteneffizientere Weise aufzunehmen. (Europäische Kommission (COM(2015) 82)

Bis zum Jahr 2050 werden die verantwortlichen Stromversorger und –händler verpflichtet, ausreichend Strom für ihre Kunden einzukaufen. Die Netzentgelte werden reformiert, damit Flexibilitätsoptionen beim Verbraucher ankommen. Ein Mindestpreis pro Tonne CO₂ (im Jahr 2015 bereits in UK verwirklich) ist vorstellbar. (Dt. Bundesministerium für Wirtschaft und Energie, Strommarkt 2.0)

Neue Komponenten (z.B. supraleitende Bauteile) und neue Technologien (z.B. Hochspannungs-Gleichstrom-Übertragung) kommen zum Einsatz. Für den Fernwärmesektor müssen neue Politikinstrumente zur langfristigen Umstellung auf erneuerbare Energien mit fairen Geschäftsmodellen für die Akteure, hoher Transparenz und Verbraucherfreundlichkeit entwickelt werden.

Die Transformation zu erneuerbaren Energien verringert die Abhängigkeit von fossilen Energieimporten und schafft eine langfristige Kostenstabilität, die für Verbraucher und Kommunen besonders wichtig ist. Die Einbeziehung bürgerschaftlichen Engagements ist erforderlich, um den Umstrukturierungsprozess auf eine gesellschaftlich breite Basis zu stellen. (*Hamburg Institut, Fernwärme 3.0*)

Für die Energieaufbringung im Jahr 2050 in Österreich werden folgende Rahmenbedingungen angenommen:

- Die Erzeugung von Strom und Wärme aus fossilen Kraft- und Heizwerken ist unter derzeitigen Bedingungen unrentabel. Aufgrund der Preisanstiege bei CO₂-Zertifikaten und des Wegfalls der Energieabgabenvergütung wird diese noch unwirtschaftlicher.
- Im Übertragungsnetz sind die für den gesamteuropäischen Binnenmarkt erforderlichen Netzkapazitäten und Verbindungsleitungen errichtet, ebenso ein intelligenter Mix an kurz-, mittel- und langfristig einsetzbaren Speicheroptionen. Die Verteilnetze sind um Kommunikations-, Mess- und Regeltechnik erweitert zu Smart Grids weiterentwickelt. Insgesamt ist jene Leitungs- und Speicherinfrastruktur vorhanden, die in Verbindung mit intelligenter Regelung und Steuerung für eine in erheblichem Maße auf volatilen erneuerbaren Energieträgern basierende Stromversorgung in Europa notwendig ist. Die Erzeugungskapazitäten zur Einspeisung sind regional gut verteilt.

Im Detail dazu:

- Durch größere Rotorflächen geht die Erzeugung aus Windkraftanlagen in Richtung höherer Betriebsstunden (Volllaststunden). Um Spitzenlasten zu vermeiden, werden die Spitzenerzeugungen nötigenfalls zur Netzstabilisierung abgeregelt (vom Netz genommen). Dadurch kommt es zu Einbußen von 2–3 % in der Erzeugung, aber es ist deutlich weniger Regelenergie als ohne Abregelung erforderlich, um den stabilen Netzbetrieb aufrecht zu erhalten. Des Weiteren werden überproportional hohe Kosten hinsichtlich des ansonsten notwendigen Netzausbaues vermieden. Bei jedem Windpark wird eine gewisse Ausgleichskapazität vorgesehen.
- Zusätzlich zu Pumpspeicherkraftwerken sind auch noch andere Medien zur Speicherung von Strom vorhanden, z.B. verbesserte Batterien¹⁷, Kondensatoren, Power-to-Gas (falls wirtschaftlich). In Gebäuden wird ein Teil der Erzeugung aus Photovoltaik in diesen neuen Speichern (z.B. Kondensatoren) gespeichert, da dies in der Bauordnung vorgeschrieben ist. Die Stromspeicher müssen nicht in jedem Haus sein, sondern können unter Berücksichtigung von Skaleneffekten z.B. auch pro Ortschaft angelegt werden. Der spezifische Bedarf an Regel-und Ausgleichsenergie wird durch regelmäßige Anpassungen des Regulierungsrahmens sowie den Einsatz innovativer Instrumente deutlich gesenkt und der Bedarf an fossilen Ausgleichskapazitäten durch die genannten zusätzlichen technologischen Optionen deutlich verringert. Für mehr Flexibilität bei der Deckung der Residuallast und deren Verringerung sorgen zudem der Ausbau des Übertragungsnetzes, die Erweiterung der Regelzonen, Demand Side Management, Smart Grids und zentrale und dezentrale Speicher. Eine Kapazitätsreserve(für Strom und auch für Wärme) für unvorhersehbare Notfälle ist sinnvoll, darf aber nicht am Markt teilnehmen.

¹⁷ Dzt. Batterien sind teilweise teurer als die PV-Anlage.

¹⁸ Dzt. Regelleistung entspricht etwa dem KW Dürnrohr.

- Demand Side Management gewinnt zunehmend an Bedeutung. Industrieanlagen richten ihren kurzfristigen Stromverbrauch nach Angebot (z.B. Verbund Power Pool http://www.verbund.com/at/de/business/energiedienstleistungen/powerpool)
- Energiedienstleistungen gewinnen zunehmend an Bedeutung: Das Geschäftsmodell von Energieversorgern orientiert sich zunehmend am Verkauf der zu erbringenden Leistung und weniger am Energieträger – ein verstärkter ökonomischer Anreiz zum Energiesparen ist die Folge.
- Biomasse wird nur in Ausnahmefällen (hocheffiziente KWK, aber nicht mit frischem Holz) zur Stromerzeugung herangezogen. Die kaskadische Nutzung wurde verbessert, Holz und andere nachwachsende Rohstoffe werden verstärkt als Baumaterial eingesetzt. Schlecht verbrennbare Biomasse wird zur Herstellung von synthetischen Gasen und Kraftstoffen verwendet.
- Die Erzeugung aus Abfallverbrennung geht zurück, da weniger Abfälle entstehen (siehe Industrie) und verbrannt werden.
- Die fossile Eigenstromerzeugung wird weniger rentabel und nimmt ab. Biomasse-KWK-Anlagen bleiben erhalten.
- Die Verdichterstationen werden (teil)elektrifiziert. Durch den EU-weit geringeren Gasverbrauch kommt es zu einem Rückgang der Transitmenge und damit des Energieverbrauchs für den Transport.
- Aufgrund der Umstellung des motorisierten Individualverkehrs auf Elektromobilität und des Rückgangs im Güterverkehr (siehe Verkehr) sinkt der Bedarf an Treibstoffen EU-weit in solchem Ausmaß, dass es zu einer Strukturbereinigung der europäischen Raffinerien kommt und bei weniger effizienten Anlagen keine umfangreichen und kostspieligen Neuinvestitionen getätigt werden. Da die Raffinerie Schwechat zwar hinsichtlich Emissionen von Luftschadstoffen dem Stand der Technik entspricht, bei der Energieeffizienz allerdings im unteren Drittel liegt, wird die Schließung der Raffinerie für das Jahr 2040 angenommen.
- In Wien wird zusätzlich zur bisherigen Struktur für die Fernwärmeaufbringung ab 2036 ein Niedertemperaturnetz in Betrieb genommen, das aus Großwärmepumpen gespeist wird. Die Wärme wird vor allem aus der Donau bzw. dem Donaukanal entnommen.

Eckpunkte

- Integration in einen funktionierenden europäischen Strommarkt
- Neue Stromspeichertechnologien
- Verbesserte Netze zur Integration der volatilen Stromerzeugung
- Ausbau von erneuerbarer Wärme und erneuerbarem Strom
- Rückgang der Nachfrageschwankungen durch bedarfsseitiges Management (DSM)

5 Literaturverzeichnis

- APG, 2014. Austrian Power Grid Erzeugung Windenergie. [Online]
 - Available at: http://www.apg.at/de/markt/erzeugung/windenergie [Zugriff am 12 2014].
- E-Control, 2014. Energie-Control Austria Elektrizitätsstatistik. [Online]
 - Available at: http://www.e-control.at/de/statistik/strom [Zugriff am 10 2014].
- European Commission, 2013. EU Energy, Transport and GHG Emissions-Trends to 2050 Reference Scenario 2013, European Union: s.n.
- Fraunhofer, 2004. Energieverbrauch der privaten Haushalte und des Sektors Gewerbe, Handel und Dienstleistungen, Abschlussbericht an das Bundesministerium für Wirtschaft und Arbeit, Karlsruhe, Berlin, Nürnberg, Leipzig, München: s.n.
- Fraunhofer, 2005. Technische und rechtliche Anwendungsmöglichkeiten einer verpflichtenden Kennzeichnung des Leerlaufverbrauchs strombetriebener Haushalts- und Bürogeräte, Dienstleistungsvorhaben Nr. 53/03, Kurzfassung des Abschlussberichts, Karlsruhe, München, Dresden: s.n.
- IEA, 2013. World Energy Outlook 2013. Paris: s.n.
- JRC, 2013. *Photovoltaic Geographical Information System Interactive Maps*. [Online] Available at: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php# [Zugriff am 10 2014].
- ÖROK, 2011. Aktualisierung der regionalisierten ÖROK-Bevölkerungs-, Erwerbstätigen- und Haushaltsprognose 2001–2031, s.l.: s.n.
- Österreichische Energieagentur, 2013. Entwicklung energiewirtschaftlicher Inputdaten und Szenarien für das Klimaschutzgesetz und zur Erfüllung der österreichischen Berichtspflichten des EU Monitoring Mechnism 2013, Wien: s.n.
- Prognos/EWI/GWS, 2011. Energieszenarien 2011, Basel, Köln, Osnabrück: s.n.
- Statistik Austria, 2014. Energiebilanzen für Österreich. [Online]

Available at:

http://www.statistik.at/web_en/statistics/energy_environment/energy/energy_balances/in_dex.html

[Zugriff am 12 2014].

- Umweltbundesamt, 2013. Energiewirtschaftliche Inputdaten und Szenarien, Wien: s.n.
- VDEW, 1999. Repräsentative VDEW-Lastprofile, VDEW-Materialien M-28/99. Berlin: Verband der Elektrizitätswirtschaft.

6 Abkürzungen

BMLFUW Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft

EEV Energetischer Endverbrauch
EEX European Energy Exchange
GuD Gas-und-Dampfkraftwerk

IEA International Energy Agency - Internationale Energieagentur

KWK Kraft-Wärme-Kopplung

ÖNACE Österreichisches Klassifikationssystem für wirtschaftliche Aktivitäten

ÖROK Österreichische Raumordnungskonferenz

ÖSG Ökostromgesetz

PSP Pump Storage Plant – Pumpspeicherkraftwerk

THG Treibhausgas

TIMES The Integrated MARKAL-EFOM-System (Modellgenerator)

U Umweltbundesamt

UEA Unternehmenseigene AnlagenWRRL EU-Wasserrahmenrichtlinie

7 Abbildungsverzeichnis

Abbildung 1: Strom- und Fernwärmeaufbringung –Szenarienvergleich	5
Abbildung 2: Struktur des Gesamtmodells des österreichischen Energiesystems	10
Abbildung 3: Zeitliche Erzeugungsstrukturen von Photovoltaik, Windkraft und Laufwasserkraft	12
Abbildung 4: Zeitliche Stromverbrauchsstrukturen der Sektoren Landwirtschaft, Dienstleistunger	า und
Haushalte	12
Abbildung 5: Überblick über die verwendeten Module des Österreich-Modells	13
Abbildung 6: Anwendungsbereiche im Sektor der privaten Haushalte	15
Abbildung 7: Schema der Berechnungsmethodik	16
Abbildung 8: Anwendungsbereich Küche und Wäsche	16
Abbildung 9: Bestimmung des Stromverbrauchs einzelner Geräte	17
Abbildung 10: Top-down-Ansatz	18
Abbildung 11: Nutzenergiekategorien	18
Abbildung 12: Branchengliederung der Industrie gemäß Energiebilanz der Statistik Austria	19
Abbildung 13: Anzahl der Haushalte und Gesamtwohnfläche im Szenario "WEM"	20
Abbildung 14: Dienstleistungen – Bruttoproduktionswert im Szenario "WEM"	20
Abbildung 15: Landwirtschaft – Bruttoproduktionswert im Szenario "WEM"	21
Abbildung 16: Industrie – Bruttoproduktionswert nach Branchen im Szenario "WEM"	21
Abbildung 17: Haushalte – Stromverbrauch nach Anwendungen im Szenario "WEM"	22
Abbildung 18: Industrie – Stromverbrauch nach Branchen im Szenario "WEM"	23
Abbildung 19: Stromverbrauch nach Sektoren im Szenario "WEM"	24
Abbildung 20: Jährliche Stromeinsparungen durch das Energieeffizienzgesetz im Szenario "WAM	u .
nach Sektoren	
Abbildung 21: Industrie – Stromverbrauch nach Branchen im Szenario "WAM"	
Abbildung 22: Stromverbrauch nach Sektoren im Szenario "WAM"	27
Abbildung 23: Industrie – Stromverbrauch nach Branchen im Szenario "WAM+"	29
Abbildung 24: Stromverbrauch nach Sektoren im Szenario "WAM+"	
Abbildung 25: Entwicklung der CO ₂ -Zertifikatspreise im Szenario "WEM"	31
Abbildung 26: Entwicklung der Energieträgerpreise im Szenario "WEM"	32
Abbildung 27: Stromaufbringung (exkl. PSP) im Szenario "WEM"	
Abbildung 28: Fernwärmeaufbringung im Szenario "WEM"	41
Abbildung 29: Umwandlungseinsatz im Szenario "WEM"	42
Abbildung 30: Stromaufbringung (exkl. PSP) im Szenario "WAM"	45
Abbildung 31: Fernwärmeaufbringung im Szenario "WAM"	
Abbildung 32: Umwandlungseinsatz im Szenario "WAM"	47
Abbildung 33: Entwicklung der CO ₂ -Zertifikatspreise im Szenario "WAM+" im Vergleich zu den	
Szenarien "WEM" und "WAM"	
Abbildung 34: Stromaufbringung (exkl. PSP) im Szenario "WAM+"	50
Abbildung 35: Fernwärmeaufbringung im Szenario "WAM+"	
Abbildung 36: Umwandlungseinsatz im Szenario "WAM+"	52

8 Tabellenverzeichnis

Tabelle 1: Strom- und Fernwärmeerzeugung, sowie Strom- und Fernwärmenachfrage jedes Sek	tors,
Erzeugung und Nachfrage für 2012 und relative Änderung bis 2013/2030 und 2012/2050	5
Tabelle 2: Haushalte – Stromverbrauch nach Anwendungen im Szenario "WEM"	22
Tabelle 3: Industrie – Stromverbrauch nach Branchen im Szenario "WEM"	23
Tabelle 4: Stromverbrauch nach Sektoren im Szenario "WEM"	24
Tabelle 5: Jährliche Stromeinsparungen durch das Energieeffizienzgesetz im Szenario "WAM" na	ach
Sektoren	25
Tabelle 6: Industrie – Stromverbrauch nach Branchen im Szenario "WAM"	26
Tabelle 7: Stromverbrauch nach Sektoren im Szenario "WAM"	27
Tabelle 8: Jährliche Verbrauchsreduktion nach Haushalts-Anwendungen im Szenario "WAM+"	28
Tabelle 9: Industrie – Stromverbrauch nach Branchen im Szenario "WAM+"	29
Tabelle 10: Stromverbrauch nach Sektoren im Szenario "WAM+"	30
Tabelle 11: Strom- und Fernwärmeaufbringung aus UEA im Szenario "WEM"	36
Tabelle 12: Fernwärmeverluste nach Quellen	37
Tabelle 13: Quellen für die Strom- und Fernwärmenachfrage	38
Tabelle 14: Stromnachfrage im Szenario "WEM": Teilergebnisse der Partner	38
Tabelle 15: Gesamtstromnachfrage im Szenario "WEM"	39
Tabelle 16: Gesamtfernwärmenachfrage im Szenario "WEM"	39
Tabelle 17: Stromaufbringung (exkl. PSP) im Szenario "WEM"	40
Tabelle 18: Fernwärmeaufbringung im Szenario "WEM"	41
Tabelle 19: Umwandlungseinsatz im Szenario "WEM"	42
Tabelle 20: Strom- und Fernwärmeaufbringung aus UEA im Szenario "WAM"	44
Tabelle 21: Stromnachfrage im Szenario "WAM": Teilergebnisse der Partner	44
Tabelle 22: Gesamtstromnachfrage im Szenario "WAM"	44
Tabelle 23: Gesamtfernwärmenachfrage im Szenario "WAM"	44
Tabelle 24: Stromaufbringung (exkl. PSP) im Szenario "WAM"	45
Tabelle 25: Fernwärmeaufbringung im Szenario "WAM"	
Tabelle 26: Umwandlungseinsatz im Szenario "WAM"	47
Tabelle 27: Strom- und Fernwärmeaufbringung aus UEA im Szenario "WAM+"	49
Tabelle 28: Stromnachfrage im Szenario "WAM+": Teilergebnisse der Partner	49
Tabelle 29: Gesamtstromnachfrage im Szenario "WAM+"	49
Tabelle 30: Gesamtfernwärmenachfrage im Szenario "WAM+"	49
Tabelle 31: Stromaufbringung (exkl. PSP) im Szenario "WAM+"	50
Tabelle 32: Fernwärmeaufbringung im Szenario "WAM+"	51
Tabelle 33: Umwandlungseinsatz im Szenario "WAM+"	52

ÜBER DIE ÖSTERREICHISCHE ENERGIEAGENTUR – AUSTRIAN ENERGY AGENCY
Die Österreichische Energieagentur ist das nationale Kompetenzzentrum für Energie in Österreich. Sie berät auf Basis ihrer vorwiegend wissenschaftlichen Tätigkeit Entscheidungsträger aus Politik, Wissenschaft und Wirtschaft. Ihre
Schwerpunkte liegen in der Forcierung von Energieeffizienz und erneuerbaren Energieträgern im Spannungsfeld
zwischen Wettbewerbsfähigkeit, Klima- und Umweltschutz sowie Versorgungssicherheit. Dazu realisiert die
Österreichische Energieagentur nationale und internationale Projekte und Programme, führt gezielte Informations - und Öffentlichkeitsarbeit durch und entwickelt Strategien für die nachhaltige und sichere Energieversorgung. Die
Österreichische Energieagentur setzt klima aktiv – die Klimaschutzinitiative des BMLFUW – operativ um und koordiniert

die verschiedenen Maßnahmen in den Themenbereichen Mobilität, Energiesparen, Bauen & Sanieren und Erneuerbare Energie. Weitere Informationen für Mitglieder und Interessenten unter www.energyagency.at.

